package memory import ( "encoding/binary" "errors" "net" "runtime" "sync" "sync/atomic" "time" log "github.com/Sirupsen/logrus" "github.com/prometheus/client_golang/prometheus" "github.com/chihaya/chihaya/bittorrent" "github.com/chihaya/chihaya/storage" ) func init() { prometheus.MustRegister(promGCDurationMilliseconds) prometheus.MustRegister(promInfohashesCount) prometheus.MustRegister(promSeedersCount, promLeechersCount) } var promGCDurationMilliseconds = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "chihaya_storage_gc_duration_milliseconds", Help: "The time it takes to perform storage garbage collection", Buckets: prometheus.ExponentialBuckets(9.375, 2, 10), }) var promInfohashesCount = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "chihaya_storage_infohashes_count", Help: "The number of infohashes tracked", }) var promSeedersCount = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "chihaya_storage_seeders_count", Help: "The number of seeders tracked", }) var promLeechersCount = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "chihaya_storage_leechers_count", Help: "The number of leechers tracked", }) // recordGCDuration records the duration of a GC sweep. func recordGCDuration(duration time.Duration) { promGCDurationMilliseconds.Observe(float64(duration.Nanoseconds()) / float64(time.Millisecond)) } // ErrInvalidGCInterval is returned for a GarbageCollectionInterval that is // less than or equal to zero. var ErrInvalidGCInterval = errors.New("invalid garbage collection interval") // Config holds the configuration of a memory PeerStore. type Config struct { GarbageCollectionInterval time.Duration `yaml:"gc_interval"` PrometheusReportingInterval time.Duration `yaml:"prometheus_reporting_interval"` PeerLifetime time.Duration `yaml:"peer_lifetime"` ShardCount int `yaml:"shard_count"` } // LogFields renders the current config as a set of Logrus fields. func (cfg Config) LogFields() log.Fields { return log.Fields{ "gcInterval": cfg.GarbageCollectionInterval, "peerLifetime": cfg.PeerLifetime, "shardCount": cfg.ShardCount, } } // New creates a new PeerStore backed by memory. func New(cfg Config) (storage.PeerStore, error) { var shardCount int if cfg.ShardCount > 0 { shardCount = cfg.ShardCount } else { log.Warnln("storage: shardCount not configured, using 1 as default value.") shardCount = 1 } if cfg.GarbageCollectionInterval <= 0 { return nil, ErrInvalidGCInterval } ps := &peerStore{ shards: make([]*peerShard, shardCount*2), closing: make(chan struct{}), } for i := 0; i < shardCount*2; i++ { ps.shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)} } ps.wg.Add(1) go func() { defer ps.wg.Done() for { select { case <-ps.closing: return case <-time.After(cfg.GarbageCollectionInterval): before := time.Now().Add(-cfg.PeerLifetime) log.Debugln("memory: purging peers with no announces since", before) ps.collectGarbage(before) } } }() ps.wg.Add(1) go func() { defer ps.wg.Done() t := time.NewTicker(1 * time.Second) for { select { case <-ps.closing: t.Stop() return case now := <-t.C: ps.setClock(now.UnixNano()) } } }() ps.wg.Add(1) go func() { defer ps.wg.Done() t := time.NewTicker(cfg.PrometheusReportingInterval) for { select { case <-ps.closing: t.Stop() return case <-t.C: before := time.Now() ps.populateProm() log.Debugf("memory: populateProm() took %s", time.Since(before)) } } }() return ps, nil } type serializedPeer string type peerShard struct { swarms map[bittorrent.InfoHash]swarm numSeeders uint64 numLeechers uint64 sync.RWMutex } type swarm struct { // map serialized peer to mtime seeders map[serializedPeer]int64 leechers map[serializedPeer]int64 } type peerStore struct { shards []*peerShard closing chan struct{} // clock stores the current time nanoseconds, updated every second. // Must be accessed atomically! clock int64 wg sync.WaitGroup } // populateProm aggregates metrics over all shards and then posts them to // prometheus. func (ps *peerStore) populateProm() { var numInfohashes, numSeeders, numLeechers uint64 for _, s := range ps.shards { s.RLock() numInfohashes += uint64(len(s.swarms)) numSeeders += s.numSeeders numLeechers += s.numLeechers s.RUnlock() } promInfohashesCount.Set(float64(numInfohashes)) promSeedersCount.Set(float64(numSeeders)) promLeechersCount.Set(float64(numLeechers)) } var _ storage.PeerStore = &peerStore{} func (ps *peerStore) getClock() int64 { return atomic.LoadInt64(&ps.clock) } func (ps *peerStore) setClock(to int64) { atomic.StoreInt64(&ps.clock, to) } func (ps *peerStore) shardIndex(infoHash bittorrent.InfoHash, af bittorrent.AddressFamily) uint32 { // There are twice the amount of shards specified by the user, the first // half is dedicated to IPv4 swarms and the second half is dedicated to // IPv6 swarms. idx := binary.BigEndian.Uint32(infoHash[:4]) % (uint32(len(ps.shards)) / 2) if af == bittorrent.IPv6 { idx += uint32(len(ps.shards) / 2) } return idx } func newPeerKey(p bittorrent.Peer) serializedPeer { b := make([]byte, 20+2+len(p.IP.IP)) copy(b[:20], p.ID[:]) binary.BigEndian.PutUint16(b[20:22], p.Port) copy(b[22:], p.IP.IP) return serializedPeer(b) } func decodePeerKey(pk serializedPeer) bittorrent.Peer { peer := bittorrent.Peer{ ID: bittorrent.PeerIDFromString(string(pk[:20])), Port: binary.BigEndian.Uint16([]byte(pk[20:22])), IP: bittorrent.IP{IP: net.IP(pk[22:])}} if ip := peer.IP.To4(); ip != nil { peer.IP.IP = ip peer.IP.AddressFamily = bittorrent.IPv4 } else if len(peer.IP.IP) == net.IPv6len { // implies toReturn.IP.To4() == nil peer.IP.AddressFamily = bittorrent.IPv6 } else { panic("IP is neither v4 nor v6") } return peer } func (ps *peerStore) PutSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } if _, ok := shard.swarms[ih].seeders[pk]; !ok { // new peer shard.numSeeders++ } shard.swarms[ih].seeders[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) DeleteSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].seeders[pk]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].seeders[pk]; ok { // seeder actually removed shard.numSeeders-- delete(shard.swarms[ih].seeders, pk) } if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() return nil } func (ps *peerStore) PutLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } if _, ok := shard.swarms[ih].leechers[pk]; !ok { // new leecher shard.numLeechers++ } shard.swarms[ih].leechers[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) DeleteLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].leechers[pk]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].leechers[pk]; ok { // leecher actually removed shard.numLeechers-- delete(shard.swarms[ih].leechers, pk) } if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() return nil } func (ps *peerStore) GraduateLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } if _, ok := shard.swarms[ih].leechers[pk]; ok { // leecher actually removed shard.numLeechers-- delete(shard.swarms[ih].leechers, pk) } if _, ok := shard.swarms[ih].seeders[pk]; !ok { // new seeder shard.numSeeders++ } shard.swarms[ih].seeders[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) AnnouncePeers(ih bittorrent.InfoHash, seeder bool, numWant int, announcer bittorrent.Peer) (peers []bittorrent.Peer, err error) { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } shard := ps.shards[ps.shardIndex(ih, announcer.IP.AddressFamily)] shard.RLock() if _, ok := shard.swarms[ih]; !ok { shard.RUnlock() return nil, storage.ErrResourceDoesNotExist } if seeder { // Append leechers as possible. leechers := shard.swarms[ih].leechers for p := range leechers { decodedPeer := decodePeerKey(p) if numWant == 0 { break } peers = append(peers, decodedPeer) numWant-- } } else { // Append as many seeders as possible. seeders := shard.swarms[ih].seeders for p := range seeders { decodedPeer := decodePeerKey(p) if numWant == 0 { break } peers = append(peers, decodedPeer) numWant-- } // Append leechers until we reach numWant. leechers := shard.swarms[ih].leechers if numWant > 0 { for p := range leechers { decodedPeer := decodePeerKey(p) if numWant == 0 { break } if decodedPeer.Equal(announcer) { continue } peers = append(peers, decodedPeer) numWant-- } } } shard.RUnlock() return } func (ps *peerStore) ScrapeSwarm(ih bittorrent.InfoHash, addressFamily bittorrent.AddressFamily) (resp bittorrent.Scrape) { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } resp.InfoHash = ih shard := ps.shards[ps.shardIndex(ih, addressFamily)] shard.RLock() if _, ok := shard.swarms[ih]; !ok { shard.RUnlock() return } resp.Incomplete = uint32(len(shard.swarms[ih].leechers)) resp.Complete = uint32(len(shard.swarms[ih].seeders)) shard.RUnlock() return } // collectGarbage deletes all Peers from the PeerStore which are older than the // cutoff time. // // This function must be able to execute while other methods on this interface // are being executed in parallel. func (ps *peerStore) collectGarbage(cutoff time.Time) error { select { case <-ps.closing: panic("attempted to interact with stopped memory store") default: } cutoffUnix := cutoff.UnixNano() start := time.Now() for _, shard := range ps.shards { shard.RLock() var infohashes []bittorrent.InfoHash for ih := range shard.swarms { infohashes = append(infohashes, ih) } shard.RUnlock() runtime.Gosched() for _, ih := range infohashes { shard.Lock() if _, stillExists := shard.swarms[ih]; !stillExists { shard.Unlock() runtime.Gosched() continue } for pk, mtime := range shard.swarms[ih].leechers { if mtime <= cutoffUnix { delete(shard.swarms[ih].leechers, pk) shard.numLeechers-- } } for pk, mtime := range shard.swarms[ih].seeders { if mtime <= cutoffUnix { delete(shard.swarms[ih].seeders, pk) shard.numSeeders-- } } if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() runtime.Gosched() } runtime.Gosched() } recordGCDuration(time.Since(start)) return nil } func (ps *peerStore) Stop() <-chan error { c := make(chan error) go func() { close(ps.closing) ps.wg.Wait() // Explicitly deallocate our storage. shards := make([]*peerShard, len(ps.shards)) for i := 0; i < len(ps.shards); i++ { shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)} } ps.shards = shards close(c) }() return c }