415 lines
27 KiB
Python
415 lines
27 KiB
Python
|
"""Converts Huggingface Causal LM to Prefix LM.
|
||
|
|
||
|
Conversion does lightweight surgery on a HuggingFace
|
||
|
Causal LM to convert it to a Prefix LM.
|
||
|
|
||
|
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
||
|
and treat the input prompt as the prefix in `generate`.
|
||
|
"""
|
||
|
import math
|
||
|
import warnings
|
||
|
from types import MethodType
|
||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
import torch
|
||
|
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
||
|
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
||
|
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
||
|
from transformers.models.bloom.modeling_bloom import logging
|
||
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||
|
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
||
|
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
||
|
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
||
|
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
||
|
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
||
|
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
||
|
logger = logging.get_logger(__name__)
|
||
|
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
||
|
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
||
|
|
||
|
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
||
|
"""Converts a GPT-style Causal LM to a Prefix LM.
|
||
|
|
||
|
Supported HuggingFace model classes:
|
||
|
- `GPT2LMHeadModel`
|
||
|
- `GPTNeoForCausalLM`
|
||
|
- `GPTNeoXForCausalLM`
|
||
|
- `GPTJForCausalLM`
|
||
|
|
||
|
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||
|
"""
|
||
|
if hasattr(model, '_prefix_lm_converted'):
|
||
|
return model
|
||
|
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
||
|
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
|
||
|
|
||
|
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
||
|
"""Helper that gets a list of the model's attention modules.
|
||
|
|
||
|
Each module has a `bias` buffer used for causal masking. The Prefix LM
|
||
|
conversion adds logic to dynamically manipulate these biases to support
|
||
|
Prefix LM attention masking.
|
||
|
"""
|
||
|
attn_modules = []
|
||
|
if isinstance(model, GPTNeoXForCausalLM):
|
||
|
blocks = model.gpt_neox.layers
|
||
|
else:
|
||
|
blocks = model.transformer.h
|
||
|
for block in blocks:
|
||
|
if isinstance(model, GPTNeoForCausalLM):
|
||
|
if block.attn.attention_type != 'global':
|
||
|
continue
|
||
|
attn_module = block.attn.attention
|
||
|
elif isinstance(model, GPTNeoXForCausalLM):
|
||
|
attn_module = block.attention
|
||
|
else:
|
||
|
attn_module = block.attn
|
||
|
attn_modules.append(attn_module)
|
||
|
return attn_modules
|
||
|
setattr(model, '_original_forward', getattr(model, 'forward'))
|
||
|
setattr(model, '_original_generate', getattr(model, 'generate'))
|
||
|
|
||
|
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
||
|
"""Wraps original forward to enable PrefixLM attention."""
|
||
|
|
||
|
def call_og_forward():
|
||
|
if isinstance(self, GPTNeoXForCausalLM):
|
||
|
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||
|
else:
|
||
|
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||
|
if bidirectional_mask is None:
|
||
|
return call_og_forward()
|
||
|
assert isinstance(bidirectional_mask, torch.Tensor)
|
||
|
attn_modules = _get_attn_modules(model)
|
||
|
(b, s) = bidirectional_mask.shape
|
||
|
max_length = attn_modules[0].bias.shape[-1]
|
||
|
if s > max_length:
|
||
|
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
|
||
|
assert s <= max_length
|
||
|
if s < max_length:
|
||
|
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
|
||
|
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
||
|
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
||
|
for attn_module in attn_modules:
|
||
|
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
||
|
output = call_og_forward()
|
||
|
for attn_module in attn_modules:
|
||
|
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
||
|
return output
|
||
|
|
||
|
def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
|
||
|
"""Wraps original generate to enable PrefixLM attention."""
|
||
|
attn_modules = _get_attn_modules(model)
|
||
|
for attn_module in attn_modules:
|
||
|
attn_module.bias.data[:] = 1
|
||
|
output = self._original_generate(*args, **kwargs)
|
||
|
for attn_module in attn_modules:
|
||
|
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
||
|
return output
|
||
|
setattr(model, 'forward', MethodType(forward, model))
|
||
|
setattr(model, 'generate', MethodType(generate, model))
|
||
|
setattr(model, '_prefix_lm_converted', True)
|
||
|
return model
|
||
|
|
||
|
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
|
||
|
"""Converts a BLOOM Causal LM to a Prefix LM.
|
||
|
|
||
|
Supported HuggingFace model classes:
|
||
|
- `BloomForCausalLM`
|
||
|
|
||
|
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||
|
"""
|
||
|
if hasattr(model, '_prefix_lm_converted'):
|
||
|
return model
|
||
|
assert isinstance(model, BloomForCausalLM)
|
||
|
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
||
|
|
||
|
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
||
|
combined_attention_mask = None
|
||
|
device = attention_mask.device
|
||
|
(_, src_length) = input_shape
|
||
|
if src_length > 1:
|
||
|
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
||
|
if bidirectional_mask is not None:
|
||
|
assert attention_mask.shape == bidirectional_mask.shape
|
||
|
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
||
|
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
||
|
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
||
|
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
||
|
return combined_attention_mask
|
||
|
|
||
|
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
||
|
num_heads = self.config.n_head
|
||
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
||
|
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
||
|
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
||
|
slopes = torch.pow(base, powers)
|
||
|
if closest_power_of_2 != num_heads:
|
||
|
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
||
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
||
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
||
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
||
|
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
||
|
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
||
|
diffs = qa - ka + key_length - query_length
|
||
|
diffs = -diffs.abs()
|
||
|
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
||
|
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
||
|
return alibi.to(dtype)
|
||
|
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
||
|
|
||
|
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
if deprecated_arguments.pop('position_ids', False) is not False:
|
||
|
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
||
|
if len(deprecated_arguments) > 0:
|
||
|
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
||
|
elif input_ids is not None:
|
||
|
(batch_size, seq_length) = input_ids.shape
|
||
|
elif inputs_embeds is not None:
|
||
|
(batch_size, seq_length, _) = inputs_embeds.shape
|
||
|
else:
|
||
|
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
||
|
if past_key_values is None:
|
||
|
past_key_values = tuple([None] * len(self.h))
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||
|
presents = () if use_cache else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
seq_length_with_past = seq_length
|
||
|
past_key_values_length = 0
|
||
|
if past_key_values[0] is not None:
|
||
|
tmp = past_key_values[0][0]
|
||
|
past_key_values_length = tmp.shape[2]
|
||
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||
|
else:
|
||
|
attention_mask = attention_mask.to(hidden_states.device)
|
||
|
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
||
|
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
||
|
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
||
|
if output_hidden_states:
|
||
|
hst = (hidden_states,)
|
||
|
all_hidden_states = all_hidden_states + hst
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
||
|
use_cache = False
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
|
||
|
def custom_forward(*inputs):
|
||
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||
|
return custom_forward
|
||
|
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
||
|
else:
|
||
|
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
||
|
hidden_states = outputs[0]
|
||
|
if use_cache is True:
|
||
|
presents = presents + (outputs[1],)
|
||
|
if output_attentions:
|
||
|
oa = (outputs[2 if use_cache else 1],)
|
||
|
all_self_attentions = all_self_attentions + oa
|
||
|
hidden_states = self.ln_f(hidden_states)
|
||
|
if output_hidden_states:
|
||
|
hst = (hidden_states,)
|
||
|
all_hidden_states = all_hidden_states + hst
|
||
|
if not return_dict:
|
||
|
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
||
|
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
||
|
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
||
|
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
||
|
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
||
|
|
||
|
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
||
|
"""Replacement forward method for BloomCausalLM."""
|
||
|
if deprecated_arguments.pop('position_ids', False) is not False:
|
||
|
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
||
|
if len(deprecated_arguments) > 0:
|
||
|
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
lm_logits = self.lm_head(hidden_states)
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
||
|
if not return_dict:
|
||
|
output = (lm_logits,) + transformer_outputs[1:]
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
||
|
|
||
|
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
||
|
if past:
|
||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||
|
bidirectional_mask = None
|
||
|
if past[0][0].shape[0] == input_ids.shape[0]:
|
||
|
past = self._convert_to_bloom_cache(past)
|
||
|
else:
|
||
|
bidirectional_mask = torch.ones_like(input_ids)
|
||
|
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
||
|
setattr(model, 'forward', MethodType(forward, model))
|
||
|
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
||
|
setattr(model, '_prefix_lm_converted', True)
|
||
|
return model
|
||
|
|
||
|
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
||
|
"""Converts an OPT Causal LM to a Prefix LM.
|
||
|
|
||
|
Supported HuggingFace model classes:
|
||
|
- `OPTForCausalLM`
|
||
|
|
||
|
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||
|
"""
|
||
|
if hasattr(model, '_prefix_lm_converted'):
|
||
|
return model
|
||
|
assert isinstance(model, OPTForCausalLM)
|
||
|
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
||
|
setattr(model, '_original_forward', getattr(model, 'forward'))
|
||
|
setattr(model, '_original_generate', getattr(model, 'generate'))
|
||
|
model.model.decoder.bidirectional_mask = None
|
||
|
|
||
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||
|
combined_attention_mask = None
|
||
|
if input_shape[-1] > 1:
|
||
|
if self.bidirectional_mask == 'g':
|
||
|
(bsz, src_length) = input_shape
|
||
|
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||
|
else:
|
||
|
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
||
|
if self.bidirectional_mask is not None:
|
||
|
assert attention_mask.shape == self.bidirectional_mask.shape
|
||
|
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
||
|
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
||
|
if attention_mask is not None:
|
||
|
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
||
|
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||
|
return combined_attention_mask
|
||
|
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
||
|
|
||
|
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
||
|
|
||
|
def call_og_forward():
|
||
|
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||
|
if bidirectional_mask is None:
|
||
|
return call_og_forward()
|
||
|
self.model.decoder.bidirectional_mask = bidirectional_mask
|
||
|
try:
|
||
|
outputs = call_og_forward()
|
||
|
except:
|
||
|
self.model.decoder.bidirectional_mask = None
|
||
|
raise
|
||
|
self.model.decoder.bidirectional_mask = None
|
||
|
return outputs
|
||
|
|
||
|
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
||
|
"""Wraps original generate to enable PrefixLM-style attention."""
|
||
|
self.model.decoder.bidirectional_mask = 'g'
|
||
|
try:
|
||
|
output = self._original_generate(*args, **kwargs)
|
||
|
except:
|
||
|
self.model.decoder.bidirectional_mask = None
|
||
|
raise
|
||
|
self.model.decoder.bidirectional_mask = None
|
||
|
return output
|
||
|
setattr(model, 'forward', MethodType(forward, model))
|
||
|
setattr(model, 'generate', MethodType(generate, model))
|
||
|
setattr(model, '_prefix_lm_converted', True)
|
||
|
return model
|
||
|
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
||
|
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
||
|
|
||
|
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
||
|
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
||
|
|
||
|
Supported HuggingFace model classes:
|
||
|
- `GPT2LMHeadModel`
|
||
|
- `GPTNeoForCausalLM`
|
||
|
- `GPTNeoXForCausalLM`
|
||
|
- `GPTJForCausalLM`
|
||
|
- `BloomForCausalLM`
|
||
|
- `OPTForCausalLM`
|
||
|
|
||
|
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
||
|
`generate` method and/or select underlying methods depending on the model class.
|
||
|
|
||
|
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
|
||
|
|
||
|
Notes on training:
|
||
|
To actually train the converted model as a Prefix LM, training batches will need to indicate
|
||
|
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
|
||
|
|
||
|
**This is not a standard input and requires custom layers either within or after your dataloader.**
|
||
|
|
||
|
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
|
||
|
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
|
||
|
That is, the prefix portion of the sequence should not generate any loss. Loss should only be
|
||
|
generated by the target portion of the sequence.
|
||
|
|
||
|
Notes on `GPTNeoForCausalLM`:
|
||
|
To simplify the implementation, "global" and "local" attention layers are handled differently.
|
||
|
For "global" layers, we handle conversion as described above. For "local" layers, which use a
|
||
|
causal attention mask within a restricted local window, we do not alter the masking.
|
||
|
|
||
|
Notes on `forward` method conversion:
|
||
|
After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
|
||
|
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
|
||
|
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
|
||
|
0 indicates token positions belonging to the target.
|
||
|
|
||
|
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
|
||
|
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
|
||
|
the causal masks before returning the result.
|
||
|
|
||
|
Notes on `generate` method conversion:
|
||
|
After conversion, the `generate` method will have the same signature but will internally
|
||
|
convert all causal masks to be purely bidirectional, call the original `generate` method, and
|
||
|
(where appropriate) reset the causal masks before returning the result.
|
||
|
|
||
|
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
|
||
|
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
|
||
|
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
|
||
|
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
|
||
|
previously-generated tokens (also as expected in a Prefix LM).
|
||
|
|
||
|
To preserve the API, the original methods are renamed to `_original_forward` and
|
||
|
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap
|
||
|
them, respectively. Although implementation details vary by model class.
|
||
|
"""
|
||
|
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
||
|
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
||
|
elif isinstance(model, BloomForCausalLM):
|
||
|
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
||
|
elif isinstance(model, OPTForCausalLM):
|
||
|
return _convert_opt_causal_lm_to_prefix_lm(model)
|
||
|
else:
|
||
|
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
||
|
|
||
|
def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
|
||
|
"""Attempts to add bidirectional_mask to batch if missing.
|
||
|
|
||
|
Raises:
|
||
|
KeyError if bidirectional_mask is missing and can't be inferred
|
||
|
"""
|
||
|
if 'bidirectional_mask' not in batch:
|
||
|
if batch.get('mode', None) == 'icl_task':
|
||
|
batch['bidirectional_mask'] = batch['attention_mask'].clone()
|
||
|
for (i, continuation_indices) in enumerate(batch['continuation_indices']):
|
||
|
batch['bidirectional_mask'][i, continuation_indices] = 0
|
||
|
elif 'labels' in batch and 'attention_mask' in batch:
|
||
|
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
|
||
|
else:
|
||
|
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
|