129 lines
3.9 KiB
Python
129 lines
3.9 KiB
Python
|
import hashlib
|
||
|
import os
|
||
|
|
||
|
import requests
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}
|
||
|
|
||
|
CKPT_MAP = {"vgg_lpips": "vgg.pth"}
|
||
|
|
||
|
MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}
|
||
|
|
||
|
|
||
|
def download(url, local_path, chunk_size=1024):
|
||
|
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
||
|
with requests.get(url, stream=True) as r:
|
||
|
total_size = int(r.headers.get("content-length", 0))
|
||
|
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
||
|
with open(local_path, "wb") as f:
|
||
|
for data in r.iter_content(chunk_size=chunk_size):
|
||
|
if data:
|
||
|
f.write(data)
|
||
|
pbar.update(chunk_size)
|
||
|
|
||
|
|
||
|
def md5_hash(path):
|
||
|
with open(path, "rb") as f:
|
||
|
content = f.read()
|
||
|
return hashlib.md5(content).hexdigest()
|
||
|
|
||
|
|
||
|
def get_ckpt_path(name, root, check=False):
|
||
|
assert name in URL_MAP
|
||
|
path = os.path.join(root, CKPT_MAP[name])
|
||
|
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
||
|
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
|
||
|
download(URL_MAP[name], path)
|
||
|
md5 = md5_hash(path)
|
||
|
assert md5 == MD5_MAP[name], md5
|
||
|
return path
|
||
|
|
||
|
|
||
|
class ActNorm(nn.Module):
|
||
|
def __init__(
|
||
|
self, num_features, logdet=False, affine=True, allow_reverse_init=False
|
||
|
):
|
||
|
assert affine
|
||
|
super().__init__()
|
||
|
self.logdet = logdet
|
||
|
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
||
|
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
||
|
self.allow_reverse_init = allow_reverse_init
|
||
|
|
||
|
self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8))
|
||
|
|
||
|
def initialize(self, input):
|
||
|
with torch.no_grad():
|
||
|
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
||
|
mean = (
|
||
|
flatten.mean(1)
|
||
|
.unsqueeze(1)
|
||
|
.unsqueeze(2)
|
||
|
.unsqueeze(3)
|
||
|
.permute(1, 0, 2, 3)
|
||
|
)
|
||
|
std = (
|
||
|
flatten.std(1)
|
||
|
.unsqueeze(1)
|
||
|
.unsqueeze(2)
|
||
|
.unsqueeze(3)
|
||
|
.permute(1, 0, 2, 3)
|
||
|
)
|
||
|
|
||
|
self.loc.data.copy_(-mean)
|
||
|
self.scale.data.copy_(1 / (std + 1e-6))
|
||
|
|
||
|
def forward(self, input, reverse=False):
|
||
|
if reverse:
|
||
|
return self.reverse(input)
|
||
|
if len(input.shape) == 2:
|
||
|
input = input[:, :, None, None]
|
||
|
squeeze = True
|
||
|
else:
|
||
|
squeeze = False
|
||
|
|
||
|
_, _, height, width = input.shape
|
||
|
|
||
|
if self.training and self.initialized.item() == 0:
|
||
|
self.initialize(input)
|
||
|
self.initialized.fill_(1)
|
||
|
|
||
|
h = self.scale * (input + self.loc)
|
||
|
|
||
|
if squeeze:
|
||
|
h = h.squeeze(-1).squeeze(-1)
|
||
|
|
||
|
if self.logdet:
|
||
|
log_abs = torch.log(torch.abs(self.scale))
|
||
|
logdet = height * width * torch.sum(log_abs)
|
||
|
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
||
|
return h, logdet
|
||
|
|
||
|
return h
|
||
|
|
||
|
def reverse(self, output):
|
||
|
if self.training and self.initialized.item() == 0:
|
||
|
if not self.allow_reverse_init:
|
||
|
raise RuntimeError(
|
||
|
"Initializing ActNorm in reverse direction is "
|
||
|
"disabled by default. Use allow_reverse_init=True to enable."
|
||
|
)
|
||
|
else:
|
||
|
self.initialize(output)
|
||
|
self.initialized.fill_(1)
|
||
|
|
||
|
if len(output.shape) == 2:
|
||
|
output = output[:, :, None, None]
|
||
|
squeeze = True
|
||
|
else:
|
||
|
squeeze = False
|
||
|
|
||
|
h = output / self.scale - self.loc
|
||
|
|
||
|
if squeeze:
|
||
|
h = h.squeeze(-1).squeeze(-1)
|
||
|
return h
|