lbry-sdk/lbrynet/wallet/coinchooser.py

314 lines
12 KiB
Python
Raw Normal View History

import struct
import logging
from collections import defaultdict, namedtuple
from math import floor, log10
from .hashing import sha256
from .constants import COIN, TYPE_ADDRESS
from .transaction import Transaction
from .errors import NotEnoughFunds
log = logging.getLogger()
class PRNG(object):
"""
A simple deterministic PRNG. Used to deterministically shuffle a
set of coins - the same set of coins should produce the same output.
Although choosing UTXOs "randomly" we want it to be deterministic,
so if sending twice from the same UTXO set we choose the same UTXOs
to spend. This prevents attacks on users by malicious or stale
servers.
"""
def __init__(self, seed):
self.sha = sha256(seed)
self.pool = bytearray()
def get_bytes(self, n):
while len(self.pool) < n:
self.pool.extend(self.sha)
self.sha = sha256(self.sha)
result, self.pool = self.pool[:n], self.pool[n:]
return result
def random(self):
# Returns random double in [0, 1)
four = self.get_bytes(4)
return struct.unpack("I", four)[0] / 4294967296.0
def randint(self, start, end):
# Returns random integer in [start, end)
return start + int(self.random() * (end - start))
def choice(self, seq):
return seq[int(self.random() * len(seq))]
def shuffle(self, x):
for i in reversed(xrange(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = int(self.random() * (i + 1))
x[i], x[j] = x[j], x[i]
Bucket = namedtuple('Bucket', ['desc', 'size', 'value', 'coins'])
def strip_unneeded(bkts, sufficient_funds):
'''Remove buckets that are unnecessary in achieving the spend amount'''
bkts = sorted(bkts, key=lambda bkt: bkt.value)
for i in range(len(bkts)):
if not sufficient_funds(bkts[i + 1:]):
return bkts[i:]
# Shouldn't get here
return bkts
class CoinChooserBase:
def keys(self, coins):
raise NotImplementedError
def bucketize_coins(self, coins):
keys = self.keys(coins)
buckets = defaultdict(list)
for key, coin in zip(keys, coins):
buckets[key].append(coin)
def make_Bucket(desc, coins):
size = sum(Transaction.estimated_input_size(coin)
for coin in coins)
value = sum(coin['value'] for coin in coins)
return Bucket(desc, size, value, coins)
return map(make_Bucket, buckets.keys(), buckets.values())
def penalty_func(self, tx):
def penalty(candidate):
return 0
return penalty
def change_amounts(self, tx, count, fee_estimator, dust_threshold):
# Break change up if bigger than max_change
output_amounts = [o[2] for o in tx.outputs()]
# Don't split change of less than 0.02 BTC
max_change = max(max(output_amounts) * 1.25, 0.02 * COIN)
# Use N change outputs
for n in range(1, count + 1):
# How much is left if we add this many change outputs?
change_amount = max(0, tx.get_fee() - fee_estimator(n))
if change_amount // n <= max_change:
break
# Get a handle on the precision of the output amounts; round our
# change to look similar
def trailing_zeroes(val):
s = str(val)
return len(s) - len(s.rstrip('0'))
zeroes = map(trailing_zeroes, output_amounts)
min_zeroes = min(zeroes)
max_zeroes = max(zeroes)
zeroes = range(max(0, min_zeroes - 1), (max_zeroes + 1) + 1)
# Calculate change; randomize it a bit if using more than 1 output
remaining = change_amount
amounts = []
while n > 1:
average = remaining // n
amount = self.p.randint(int(average * 0.7), int(average * 1.3))
precision = min(self.p.choice(zeroes), int(floor(log10(amount))))
amount = int(round(amount, -precision))
amounts.append(amount)
remaining -= amount
n -= 1
# Last change output. Round down to maximum precision but lose
# no more than 100 satoshis to fees (2dp)
N = pow(10, min(2, zeroes[0]))
amount = (remaining // N) * N
amounts.append(amount)
assert sum(amounts) <= change_amount
return amounts
def change_outputs(self, tx, change_addrs, fee_estimator, dust_threshold):
amounts = self.change_amounts(tx, len(change_addrs), fee_estimator,
dust_threshold)
assert min(amounts) >= 0
assert len(change_addrs) >= len(amounts)
# If change is above dust threshold after accounting for the
# size of the change output, add it to the transaction.
dust = sum(amount for amount in amounts if amount < dust_threshold)
amounts = [amount for amount in amounts if amount >= dust_threshold]
change = [(TYPE_ADDRESS, addr, amount)
for addr, amount in zip(change_addrs, amounts)]
log.debug('change: %s', change)
if dust:
log.debug('not keeping dust %s', dust)
return change
def make_tx(self, coins, outputs, change_addrs, fee_estimator,
dust_threshold, abandon_txid=None):
'''Select unspent coins to spend to pay outputs. If the change is
greater than dust_threshold (after adding the change output to
the transaction) it is kept, otherwise none is sent and it is
added to the transaction fee.'''
# Deterministic randomness from coins
utxos = [c['prevout_hash'] + str(c['prevout_n']) for c in coins]
self.p = PRNG(''.join(sorted(utxos)))
# Copy the ouputs so when adding change we don't modify "outputs"
tx = Transaction.from_io([], outputs[:])
# Size of the transaction with no inputs and no change
base_size = tx.estimated_size()
spent_amount = tx.output_value()
claim_coin = None
if abandon_txid is not None:
claim_coins = [coin for coin in coins if coin['is_claim']]
assert len(claim_coins) >= 1
claim_coin = claim_coins[0]
spent_amount -= claim_coin['value']
coins = [coin for coin in coins if not coin['is_claim']]
def sufficient_funds(buckets):
'''Given a list of buckets, return True if it has enough
value to pay for the transaction'''
total_input = sum(bucket.value for bucket in buckets)
total_size = sum(bucket.size for bucket in buckets) + base_size
return total_input >= spent_amount + fee_estimator(total_size)
# Collect the coins into buckets, choose a subset of the buckets
buckets = self.bucketize_coins(coins)
buckets = self.choose_buckets(buckets, sufficient_funds,
self.penalty_func(tx))
if claim_coin is not None:
tx.add_inputs([claim_coin])
tx.add_inputs([coin for b in buckets for coin in b.coins])
tx_size = base_size + sum(bucket.size for bucket in buckets)
# This takes a count of change outputs and returns a tx fee;
# each pay-to-bitcoin-address output serializes as 34 bytes
def fee(count):
return fee_estimator(tx_size + count * 34)
change = self.change_outputs(tx, change_addrs, fee, dust_threshold)
tx.add_outputs(change)
log.debug("using %i inputs", len(tx.inputs()))
log.info("using buckets: %s", [bucket.desc for bucket in buckets])
return tx
class CoinChooserOldestFirst(CoinChooserBase):
'''Maximize transaction priority. Select the oldest unspent
transaction outputs in your wallet, that are sufficient to cover
the spent amount. Then, remove any unneeded inputs, starting with
the smallest in value.
'''
def keys(self, coins):
return [coin['prevout_hash'] + ':' + str(coin['prevout_n'])
for coin in coins]
def choose_buckets(self, buckets, sufficient_funds, penalty_func):
'''Spend the oldest buckets first.'''
# Unconfirmed coins are young, not old
def adj_height(height):
return 99999999 if height == 0 else height
buckets.sort(key=lambda b: max(adj_height(coin['height'])
for coin in b.coins))
selected = []
for bucket in buckets:
selected.append(bucket)
if sufficient_funds(selected):
return strip_unneeded(selected, sufficient_funds)
raise NotEnoughFunds()
class CoinChooserRandom(CoinChooserBase):
def keys(self, coins):
return [coin['prevout_hash'] + ':' + str(coin['prevout_n'])
for coin in coins]
def bucket_candidates(self, buckets, sufficient_funds):
'''Returns a list of bucket sets.'''
candidates = set()
# Add all singletons
for n, bucket in enumerate(buckets):
if sufficient_funds([bucket]):
candidates.add((n,))
# And now some random ones
attempts = min(100, (len(buckets) - 1) * 10 + 1)
permutation = range(len(buckets))
for i in range(attempts):
# Get a random permutation of the buckets, and
# incrementally combine buckets until sufficient
self.p.shuffle(permutation)
bkts = []
for count, index in enumerate(permutation):
bkts.append(buckets[index])
if sufficient_funds(bkts):
candidates.add(tuple(sorted(permutation[:count + 1])))
break
else:
raise NotEnoughFunds()
candidates = [[buckets[n] for n in c] for c in candidates]
return [strip_unneeded(c, sufficient_funds) for c in candidates]
def choose_buckets(self, buckets, sufficient_funds, penalty_func):
candidates = self.bucket_candidates(buckets, sufficient_funds)
penalties = [penalty_func(cand) for cand in candidates]
winner = candidates[penalties.index(min(penalties))]
log.debug("Bucket sets: %i", len(buckets))
log.debug("Winning penalty: %s", min(penalties))
return winner
class CoinChooserPrivacy(CoinChooserRandom):
'''Attempts to better preserve user privacy. First, if any coin is
spent from a user address, all coins are. Compared to spending
from other addresses to make up an amount, this reduces
information leakage about sender holdings. It also helps to
reduce blockchain UTXO bloat, and reduce future privacy loss that
would come from reusing that address' remaining UTXOs. Second, it
penalizes change that is quite different to the sent amount.
Third, it penalizes change that is too big.'''
def keys(self, coins):
return [coin['address'] for coin in coins]
def penalty_func(self, tx):
min_change = min(o[2] for o in tx.outputs()) * 0.75
max_change = max(o[2] for o in tx.outputs()) * 1.33
spent_amount = sum(o[2] for o in tx.outputs())
def penalty(buckets):
badness = len(buckets) - 1
total_input = sum(bucket.value for bucket in buckets)
change = float(total_input - spent_amount)
# Penalize change not roughly in output range
if change < min_change:
badness += (min_change - change) / (min_change + 10000)
elif change > max_change:
badness += (change - max_change) / (max_change + 10000)
# Penalize large change; 5 BTC excess ~= using 1 more input
badness += change / (COIN * 5)
return badness
return penalty
COIN_CHOOSERS = {'Priority': CoinChooserOldestFirst,
'Privacy': CoinChooserPrivacy}