forked from LBRYCommunity/lbry-sdk
634 lines
20 KiB
Python
634 lines
20 KiB
Python
|
import base64
|
||
|
import hashlib
|
||
|
import hmac
|
||
|
import struct
|
||
|
import logging
|
||
|
import aes
|
||
|
import ecdsa
|
||
|
from ecdsa import numbertheory, util
|
||
|
from ecdsa.curves import SECP256k1
|
||
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
|
||
|
from ecdsa.ellipticcurve import Point
|
||
|
from ecdsa.util import number_to_string, string_to_number
|
||
|
|
||
|
from lbryschema.address import public_key_to_address
|
||
|
from lbryschema.schema import B58_CHARS
|
||
|
from lbryschema.base import b58encode_with_checksum, b58decode_strip_checksum
|
||
|
|
||
|
from . import msqr
|
||
|
from .util import rev_hex, var_int, int_to_hex
|
||
|
from .hashing import Hash, sha256, hash_160
|
||
|
from .errors import InvalidPassword, InvalidClaimId
|
||
|
from .constants import CLAIM_ID_SIZE
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
# AES encryption
|
||
|
EncodeAES = lambda secret, s: base64.b64encode(aes.encryptData(secret, s))
|
||
|
DecodeAES = lambda secret, e: aes.decryptData(secret, base64.b64decode(e))
|
||
|
|
||
|
|
||
|
# get the claim id hash from txid bytes and int n
|
||
|
def claim_id_hash(txid, n):
|
||
|
return hash_160(txid + struct.pack('>I', n))
|
||
|
|
||
|
|
||
|
# deocde a claim_id hex string
|
||
|
def decode_claim_id_hex(claim_id_hex):
|
||
|
claim_id = rev_hex(claim_id_hex).decode('hex')
|
||
|
if len(claim_id) != CLAIM_ID_SIZE:
|
||
|
raise InvalidClaimId()
|
||
|
return claim_id
|
||
|
|
||
|
|
||
|
# encode claim id bytes into hex string
|
||
|
def encode_claim_id_hex(claim_id):
|
||
|
return rev_hex(claim_id.encode('hex'))
|
||
|
|
||
|
|
||
|
def strip_PKCS7_padding(s):
|
||
|
"""return s stripped of PKCS7 padding"""
|
||
|
if len(s) % 16 or not s:
|
||
|
raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
|
||
|
numpads = ord(s[-1])
|
||
|
if numpads > 16:
|
||
|
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
|
||
|
if s[-numpads:] != numpads * chr(numpads):
|
||
|
raise ValueError("Invalid PKCS7 padding")
|
||
|
return s[:-numpads]
|
||
|
|
||
|
|
||
|
# backport padding fix to AES module
|
||
|
aes.strip_PKCS7_padding = strip_PKCS7_padding
|
||
|
|
||
|
|
||
|
def aes_encrypt_with_iv(key, iv, data):
|
||
|
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
|
||
|
key = map(ord, key)
|
||
|
iv = map(ord, iv)
|
||
|
data = aes.append_PKCS7_padding(data)
|
||
|
keysize = len(key)
|
||
|
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
|
||
|
moo = aes.AESModeOfOperation()
|
||
|
(mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
|
||
|
return ''.join(map(chr, ciph))
|
||
|
|
||
|
|
||
|
def aes_decrypt_with_iv(key, iv, data):
|
||
|
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
|
||
|
key = map(ord, key)
|
||
|
iv = map(ord, iv)
|
||
|
keysize = len(key)
|
||
|
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
|
||
|
data = map(ord, data)
|
||
|
moo = aes.AESModeOfOperation()
|
||
|
decr = moo.decrypt(data, None, mode, key, keysize, iv)
|
||
|
decr = strip_PKCS7_padding(decr)
|
||
|
return decr
|
||
|
|
||
|
|
||
|
def pw_encode(s, password):
|
||
|
if password:
|
||
|
secret = Hash(password)
|
||
|
return EncodeAES(secret, s.encode("utf8"))
|
||
|
else:
|
||
|
return s
|
||
|
|
||
|
|
||
|
def pw_decode(s, password):
|
||
|
if password is not None:
|
||
|
secret = Hash(password)
|
||
|
try:
|
||
|
d = DecodeAES(secret, s).decode("utf8")
|
||
|
except Exception:
|
||
|
raise InvalidPassword()
|
||
|
return d
|
||
|
else:
|
||
|
return s
|
||
|
|
||
|
|
||
|
def op_push(i):
|
||
|
if i < 0x4c:
|
||
|
return int_to_hex(i)
|
||
|
elif i < 0xff:
|
||
|
return '4c' + int_to_hex(i)
|
||
|
elif i < 0xffff:
|
||
|
return '4d' + int_to_hex(i, 2)
|
||
|
else:
|
||
|
return '4e' + int_to_hex(i, 4)
|
||
|
|
||
|
|
||
|
# pywallet openssl private key implementation
|
||
|
|
||
|
def i2o_ECPublicKey(pubkey, compressed=False):
|
||
|
# public keys are 65 bytes long (520 bits)
|
||
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
|
||
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
|
||
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
|
||
|
if compressed:
|
||
|
if pubkey.point.y() & 1:
|
||
|
key = '03' + '%064x' % pubkey.point.x()
|
||
|
else:
|
||
|
key = '02' + '%064x' % pubkey.point.x()
|
||
|
else:
|
||
|
key = '04' + \
|
||
|
'%064x' % pubkey.point.x() + \
|
||
|
'%064x' % pubkey.point.y()
|
||
|
|
||
|
return key.decode('hex')
|
||
|
|
||
|
|
||
|
# end pywallet openssl private key implementation
|
||
|
# functions from pywallet
|
||
|
|
||
|
|
||
|
def PrivKeyToSecret(privkey):
|
||
|
return privkey[9:9 + 32]
|
||
|
|
||
|
|
||
|
def SecretToASecret(secret, compressed=False, addrtype=0):
|
||
|
vchIn = chr((addrtype + 128) & 255) + secret
|
||
|
if compressed:
|
||
|
vchIn += '\01'
|
||
|
return b58encode_with_checksum(vchIn)
|
||
|
|
||
|
|
||
|
def ASecretToSecret(key, addrtype=0):
|
||
|
vch = b58decode_strip_checksum(key)
|
||
|
if vch and vch[0] == chr((addrtype + 128) & 255):
|
||
|
return vch[1:]
|
||
|
elif is_minikey(key):
|
||
|
return minikey_to_private_key(key)
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def regenerate_key(sec):
|
||
|
b = ASecretToSecret(sec)
|
||
|
if not b:
|
||
|
return False
|
||
|
b = b[0:32]
|
||
|
return EC_KEY(b)
|
||
|
|
||
|
|
||
|
def GetPubKey(pubkey, compressed=False):
|
||
|
return i2o_ECPublicKey(pubkey, compressed)
|
||
|
|
||
|
|
||
|
def GetSecret(pkey):
|
||
|
return ('%064x' % pkey.secret).decode('hex')
|
||
|
|
||
|
|
||
|
def is_compressed(sec):
|
||
|
b = ASecretToSecret(sec)
|
||
|
return len(b) == 33
|
||
|
|
||
|
|
||
|
def public_key_from_private_key(sec):
|
||
|
# rebuild public key from private key, compressed or uncompressed
|
||
|
pkey = regenerate_key(sec)
|
||
|
assert pkey
|
||
|
compressed = is_compressed(sec)
|
||
|
public_key = GetPubKey(pkey.pubkey, compressed)
|
||
|
return public_key.encode('hex')
|
||
|
|
||
|
|
||
|
def address_from_private_key(sec):
|
||
|
public_key = public_key_from_private_key(sec)
|
||
|
address = public_key_to_address(public_key.decode('hex'))
|
||
|
return address
|
||
|
|
||
|
|
||
|
def is_private_key(key):
|
||
|
try:
|
||
|
k = ASecretToSecret(key)
|
||
|
return k is not False
|
||
|
except:
|
||
|
return False
|
||
|
|
||
|
# end pywallet functions
|
||
|
|
||
|
|
||
|
def is_minikey(text):
|
||
|
# Minikeys are typically 22 or 30 characters, but this routine
|
||
|
# permits any length of 20 or more provided the minikey is valid.
|
||
|
# A valid minikey must begin with an 'S', be in base58, and when
|
||
|
# suffixed with '?' have its SHA256 hash begin with a zero byte.
|
||
|
# They are widely used in Casascius physical bitoins.
|
||
|
return (len(text) >= 20 and text[0] == 'S'
|
||
|
and all(c in B58_CHARS for c in text)
|
||
|
and ord(sha256(text + '?')[0]) == 0)
|
||
|
|
||
|
|
||
|
def minikey_to_private_key(text):
|
||
|
return sha256(text)
|
||
|
|
||
|
|
||
|
def msg_magic(message):
|
||
|
varint = var_int(len(message))
|
||
|
encoded_varint = "".join([chr(int(varint[i:i + 2], 16)) for i in xrange(0, len(varint), 2)])
|
||
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
|
||
|
|
||
|
|
||
|
def verify_message(address, signature, message):
|
||
|
try:
|
||
|
EC_KEY.verify_message(address, signature, message)
|
||
|
return True
|
||
|
except Exception as e:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def encrypt_message(message, pubkey):
|
||
|
return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
|
||
|
|
||
|
|
||
|
def chunks(l, n):
|
||
|
return [l[i:i + n] for i in xrange(0, len(l), n)]
|
||
|
|
||
|
|
||
|
def ECC_YfromX(x, curved=curve_secp256k1, odd=True):
|
||
|
_p = curved.p()
|
||
|
_a = curved.a()
|
||
|
_b = curved.b()
|
||
|
for offset in range(128):
|
||
|
Mx = x + offset
|
||
|
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
|
||
|
My = pow(My2, (_p + 1) / 4, _p)
|
||
|
|
||
|
if curved.contains_point(Mx, My):
|
||
|
if odd == bool(My & 1):
|
||
|
return [My, offset]
|
||
|
return [_p - My, offset]
|
||
|
raise Exception('ECC_YfromX: No Y found')
|
||
|
|
||
|
|
||
|
def negative_point(P):
|
||
|
return Point(P.curve(), P.x(), -P.y(), P.order())
|
||
|
|
||
|
|
||
|
def point_to_ser(P, comp=True):
|
||
|
if comp:
|
||
|
return (('%02x' % (2 + (P.y() & 1))) + ('%064x' % P.x())).decode('hex')
|
||
|
return ('04' + ('%064x' % P.x()) + ('%064x' % P.y())).decode('hex')
|
||
|
|
||
|
|
||
|
def ser_to_point(Aser):
|
||
|
curve = curve_secp256k1
|
||
|
generator = generator_secp256k1
|
||
|
_r = generator.order()
|
||
|
assert Aser[0] in ['\x02', '\x03', '\x04']
|
||
|
if Aser[0] == '\x04':
|
||
|
return Point(curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r)
|
||
|
Mx = string_to_number(Aser[1:])
|
||
|
return Point(curve, Mx, ECC_YfromX(Mx, curve, Aser[0] == '\x03')[0], _r)
|
||
|
|
||
|
|
||
|
class MyVerifyingKey(ecdsa.VerifyingKey):
|
||
|
@classmethod
|
||
|
def from_signature(cls, sig, recid, h, curve):
|
||
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
|
||
|
curveFp = curve.curve
|
||
|
G = curve.generator
|
||
|
order = G.order()
|
||
|
# extract r,s from signature
|
||
|
r, s = util.sigdecode_string(sig, order)
|
||
|
# 1.1
|
||
|
x = r + (recid / 2) * order
|
||
|
# 1.3
|
||
|
alpha = (x * x * x + curveFp.a() * x + curveFp.b()) % curveFp.p()
|
||
|
beta = msqr.modular_sqrt(alpha, curveFp.p())
|
||
|
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
|
||
|
# 1.4 the constructor checks that nR is at infinity
|
||
|
R = Point(curveFp, x, y, order)
|
||
|
# 1.5 compute e from message:
|
||
|
e = string_to_number(h)
|
||
|
minus_e = -e % order
|
||
|
# 1.6 compute Q = r^-1 (sR - eG)
|
||
|
inv_r = numbertheory.inverse_mod(r, order)
|
||
|
Q = inv_r * (s * R + minus_e * G)
|
||
|
return cls.from_public_point(Q, curve)
|
||
|
|
||
|
|
||
|
class MySigningKey(ecdsa.SigningKey):
|
||
|
"""Enforce low S values in signatures"""
|
||
|
|
||
|
def sign_number(self, number, entropy=None, k=None):
|
||
|
curve = SECP256k1
|
||
|
G = curve.generator
|
||
|
order = G.order()
|
||
|
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k)
|
||
|
if s > order / 2:
|
||
|
s = order - s
|
||
|
return r, s
|
||
|
|
||
|
|
||
|
class EC_KEY(object):
|
||
|
def __init__(self, k):
|
||
|
secret = string_to_number(k)
|
||
|
self.pubkey = ecdsa.ecdsa.Public_key(generator_secp256k1, generator_secp256k1 * secret)
|
||
|
self.privkey = ecdsa.ecdsa.Private_key(self.pubkey, secret)
|
||
|
self.secret = secret
|
||
|
|
||
|
def get_public_key(self, compressed=True):
|
||
|
return point_to_ser(self.pubkey.point, compressed).encode('hex')
|
||
|
|
||
|
def sign(self, msg_hash):
|
||
|
private_key = MySigningKey.from_secret_exponent(self.secret, curve=SECP256k1)
|
||
|
public_key = private_key.get_verifying_key()
|
||
|
signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256,
|
||
|
sigencode=ecdsa.util.sigencode_string)
|
||
|
assert public_key.verify_digest(signature, msg_hash, sigdecode=ecdsa.util.sigdecode_string)
|
||
|
return signature
|
||
|
|
||
|
def sign_message(self, message, compressed, address):
|
||
|
signature = self.sign(Hash(msg_magic(message)))
|
||
|
for i in range(4):
|
||
|
sig = chr(27 + i + (4 if compressed else 0)) + signature
|
||
|
try:
|
||
|
self.verify_message(address, sig, message)
|
||
|
return sig
|
||
|
except Exception:
|
||
|
log.exception("error: cannot sign message")
|
||
|
continue
|
||
|
raise Exception("error: cannot sign message")
|
||
|
|
||
|
@classmethod
|
||
|
def verify_message(cls, address, sig, message):
|
||
|
if len(sig) != 65:
|
||
|
raise Exception("Wrong encoding")
|
||
|
nV = ord(sig[0])
|
||
|
if nV < 27 or nV >= 35:
|
||
|
raise Exception("Bad encoding")
|
||
|
if nV >= 31:
|
||
|
compressed = True
|
||
|
nV -= 4
|
||
|
else:
|
||
|
compressed = False
|
||
|
recid = nV - 27
|
||
|
|
||
|
h = Hash(msg_magic(message))
|
||
|
public_key = MyVerifyingKey.from_signature(sig[1:], recid, h, curve=SECP256k1)
|
||
|
# check public key
|
||
|
public_key.verify_digest(sig[1:], h, sigdecode=ecdsa.util.sigdecode_string)
|
||
|
pubkey = point_to_ser(public_key.pubkey.point, compressed)
|
||
|
# check that we get the original signing address
|
||
|
addr = public_key_to_address(pubkey)
|
||
|
if address != addr:
|
||
|
raise Exception("Bad signature")
|
||
|
|
||
|
# ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher;
|
||
|
# hmac-sha256 is used as the mac
|
||
|
|
||
|
@classmethod
|
||
|
def encrypt_message(cls, message, pubkey):
|
||
|
|
||
|
pk = ser_to_point(pubkey)
|
||
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
|
||
|
raise Exception('invalid pubkey')
|
||
|
|
||
|
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2, 256)),
|
||
|
generator_secp256k1.order())
|
||
|
ephemeral = EC_KEY(ephemeral_exponent)
|
||
|
ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier)
|
||
|
key = hashlib.sha512(ecdh_key).digest()
|
||
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
||
|
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
|
||
|
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
|
||
|
encrypted = 'BIE1' + ephemeral_pubkey + ciphertext
|
||
|
mac = hmac.new(key_m, encrypted, hashlib.sha256).digest()
|
||
|
|
||
|
return base64.b64encode(encrypted + mac)
|
||
|
|
||
|
def decrypt_message(self, encrypted):
|
||
|
|
||
|
encrypted = base64.b64decode(encrypted)
|
||
|
|
||
|
if len(encrypted) < 85:
|
||
|
raise Exception('invalid ciphertext: length')
|
||
|
|
||
|
magic = encrypted[:4]
|
||
|
ephemeral_pubkey = encrypted[4:37]
|
||
|
ciphertext = encrypted[37:-32]
|
||
|
mac = encrypted[-32:]
|
||
|
|
||
|
if magic != 'BIE1':
|
||
|
raise Exception('invalid ciphertext: invalid magic bytes')
|
||
|
|
||
|
try:
|
||
|
ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
|
||
|
except AssertionError, e:
|
||
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
||
|
|
||
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(),
|
||
|
ephemeral_pubkey.y()):
|
||
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
||
|
|
||
|
ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier)
|
||
|
key = hashlib.sha512(ecdh_key).digest()
|
||
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
||
|
if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest():
|
||
|
raise Exception('invalid ciphertext: invalid mac')
|
||
|
|
||
|
return aes_decrypt_with_iv(key_e, iv, ciphertext)
|
||
|
|
||
|
|
||
|
# BIP32
|
||
|
|
||
|
def random_seed(n):
|
||
|
return "%032x" % ecdsa.util.randrange(pow(2, n))
|
||
|
|
||
|
|
||
|
BIP32_PRIME = 0x80000000
|
||
|
|
||
|
|
||
|
def get_pubkeys_from_secret(secret):
|
||
|
# public key
|
||
|
private_key = ecdsa.SigningKey.from_string(secret, curve=SECP256k1)
|
||
|
public_key = private_key.get_verifying_key()
|
||
|
K = public_key.to_string()
|
||
|
K_compressed = GetPubKey(public_key.pubkey, True)
|
||
|
return K, K_compressed
|
||
|
|
||
|
|
||
|
# Child private key derivation function (from master private key)
|
||
|
# k = master private key (32 bytes)
|
||
|
# c = master chain code (extra entropy for key derivation) (32 bytes)
|
||
|
# n = the index of the key we want to derive. (only 32 bits will be used)
|
||
|
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
|
||
|
# corresponding public key can NOT be determined without the master private key.
|
||
|
# However, if n is positive, the resulting private key's corresponding
|
||
|
# public key can be determined without the master private key.
|
||
|
def CKD_priv(k, c, n):
|
||
|
is_prime = n & BIP32_PRIME
|
||
|
return _CKD_priv(k, c, rev_hex(int_to_hex(n, 4)).decode('hex'), is_prime)
|
||
|
|
||
|
|
||
|
def _CKD_priv(k, c, s, is_prime):
|
||
|
order = generator_secp256k1.order()
|
||
|
keypair = EC_KEY(k)
|
||
|
cK = GetPubKey(keypair.pubkey, True)
|
||
|
data = chr(0) + k + s if is_prime else cK + s
|
||
|
I = hmac.new(c, data, hashlib.sha512).digest()
|
||
|
k_n = number_to_string((string_to_number(I[0:32]) + string_to_number(k)) % order, order)
|
||
|
c_n = I[32:]
|
||
|
return k_n, c_n
|
||
|
|
||
|
|
||
|
# Child public key derivation function (from public key only)
|
||
|
# K = master public key
|
||
|
# c = master chain code
|
||
|
# n = index of key we want to derive
|
||
|
# This function allows us to find the nth public key, as long as n is
|
||
|
# non-negative. If n is negative, we need the master private key to find it.
|
||
|
def CKD_pub(cK, c, n):
|
||
|
if n & BIP32_PRIME:
|
||
|
raise Exception("CKD pub error")
|
||
|
return _CKD_pub(cK, c, rev_hex(int_to_hex(n, 4)).decode('hex'))
|
||
|
|
||
|
|
||
|
# helper function, callable with arbitrary string
|
||
|
def _CKD_pub(cK, c, s):
|
||
|
order = generator_secp256k1.order()
|
||
|
I = hmac.new(c, cK + s, hashlib.sha512).digest()
|
||
|
curve = SECP256k1
|
||
|
pubkey_point = string_to_number(I[0:32]) * curve.generator + ser_to_point(cK)
|
||
|
public_key = ecdsa.VerifyingKey.from_public_point(pubkey_point, curve=SECP256k1)
|
||
|
c_n = I[32:]
|
||
|
cK_n = GetPubKey(public_key.pubkey, True)
|
||
|
return cK_n, c_n
|
||
|
|
||
|
|
||
|
BITCOIN_HEADER_PRIV = "0488ade4"
|
||
|
BITCOIN_HEADER_PUB = "0488b21e"
|
||
|
|
||
|
TESTNET_HEADER_PRIV = "04358394"
|
||
|
TESTNET_HEADER_PUB = "043587cf"
|
||
|
|
||
|
BITCOIN_HEADERS = (BITCOIN_HEADER_PUB, BITCOIN_HEADER_PRIV)
|
||
|
TESTNET_HEADERS = (TESTNET_HEADER_PUB, TESTNET_HEADER_PRIV)
|
||
|
|
||
|
|
||
|
def _get_headers(testnet):
|
||
|
"""Returns the correct headers for either testnet or bitcoin, in the form
|
||
|
of a 2-tuple, like (public, private)."""
|
||
|
if testnet:
|
||
|
return TESTNET_HEADERS
|
||
|
else:
|
||
|
return BITCOIN_HEADERS
|
||
|
|
||
|
|
||
|
def deserialize_xkey(xkey):
|
||
|
xkey = b58decode_strip_checksum(xkey)
|
||
|
assert len(xkey) == 78
|
||
|
|
||
|
xkey_header = xkey[0:4].encode('hex')
|
||
|
# Determine if the key is a bitcoin key or a testnet key.
|
||
|
if xkey_header in TESTNET_HEADERS:
|
||
|
head = TESTNET_HEADER_PRIV
|
||
|
elif xkey_header in BITCOIN_HEADERS:
|
||
|
head = BITCOIN_HEADER_PRIV
|
||
|
else:
|
||
|
raise Exception("Unknown xkey header: '%s'" % xkey_header)
|
||
|
|
||
|
depth = ord(xkey[4])
|
||
|
fingerprint = xkey[5:9]
|
||
|
child_number = xkey[9:13]
|
||
|
c = xkey[13:13 + 32]
|
||
|
if xkey[0:4].encode('hex') == head:
|
||
|
K_or_k = xkey[13 + 33:]
|
||
|
else:
|
||
|
K_or_k = xkey[13 + 32:]
|
||
|
return depth, fingerprint, child_number, c, K_or_k
|
||
|
|
||
|
|
||
|
def get_xkey_name(xkey, testnet=False):
|
||
|
depth, fingerprint, child_number, c, K = deserialize_xkey(xkey)
|
||
|
n = int(child_number.encode('hex'), 16)
|
||
|
if n & BIP32_PRIME:
|
||
|
child_id = "%d'" % (n - BIP32_PRIME)
|
||
|
else:
|
||
|
child_id = "%d" % n
|
||
|
if depth == 0:
|
||
|
return ''
|
||
|
elif depth == 1:
|
||
|
return child_id
|
||
|
else:
|
||
|
raise BaseException("xpub depth error")
|
||
|
|
||
|
|
||
|
def xpub_from_xprv(xprv, testnet=False):
|
||
|
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
|
||
|
K, cK = get_pubkeys_from_secret(k)
|
||
|
header_pub, _ = _get_headers(testnet)
|
||
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
||
|
return b58encode_with_checksum(xpub)
|
||
|
|
||
|
|
||
|
def bip32_root(seed, testnet=False):
|
||
|
header_pub, header_priv = _get_headers(testnet)
|
||
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
|
||
|
master_k = I[0:32]
|
||
|
master_c = I[32:]
|
||
|
K, cK = get_pubkeys_from_secret(master_k)
|
||
|
xprv = (header_priv + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(
|
||
|
0) + master_k
|
||
|
xpub = (header_pub + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
|
||
|
return b58encode_with_checksum(xprv), b58encode_with_checksum(xpub)
|
||
|
|
||
|
|
||
|
def xpub_from_pubkey(cK, testnet=False):
|
||
|
header_pub, header_priv = _get_headers(testnet)
|
||
|
assert cK[0] in ['\x02', '\x03']
|
||
|
master_c = chr(0) * 32
|
||
|
xpub = (header_pub + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
|
||
|
return b58encode_with_checksum(xpub)
|
||
|
|
||
|
|
||
|
def bip32_private_derivation(xprv, branch, sequence, testnet=False):
|
||
|
assert sequence.startswith(branch)
|
||
|
if branch == sequence:
|
||
|
return xprv, xpub_from_xprv(xprv, testnet)
|
||
|
header_pub, header_priv = _get_headers(testnet)
|
||
|
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
|
||
|
sequence = sequence[len(branch):]
|
||
|
for n in sequence.split('/'):
|
||
|
if n == '':
|
||
|
continue
|
||
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
||
|
parent_k = k
|
||
|
k, c = CKD_priv(k, c, i)
|
||
|
depth += 1
|
||
|
|
||
|
_, parent_cK = get_pubkeys_from_secret(parent_k)
|
||
|
fingerprint = hash_160(parent_cK)[0:4]
|
||
|
child_number = ("%08X" % i).decode('hex')
|
||
|
K, cK = get_pubkeys_from_secret(k)
|
||
|
xprv = header_priv.decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k
|
||
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
||
|
return b58encode_with_checksum(xprv), b58encode_with_checksum(xpub)
|
||
|
|
||
|
|
||
|
def bip32_public_derivation(xpub, branch, sequence, testnet=False):
|
||
|
header_pub, _ = _get_headers(testnet)
|
||
|
depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub)
|
||
|
assert sequence.startswith(branch)
|
||
|
sequence = sequence[len(branch):]
|
||
|
for n in sequence.split('/'):
|
||
|
if n == '':
|
||
|
continue
|
||
|
i = int(n)
|
||
|
parent_cK = cK
|
||
|
cK, c = CKD_pub(cK, c, i)
|
||
|
depth += 1
|
||
|
|
||
|
fingerprint = hash_160(parent_cK)[0:4]
|
||
|
child_number = ("%08X" % i).decode('hex')
|
||
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
||
|
return b58encode_with_checksum(xpub)
|
||
|
|
||
|
|
||
|
def bip32_private_key(sequence, k, chain):
|
||
|
for i in sequence:
|
||
|
k, chain = CKD_priv(k, chain, i)
|
||
|
return SecretToASecret(k, True)
|