from random import Random from typing import List from lbry.wallet.transaction import OutputEffectiveAmountEstimator MAXIMUM_TRIES = 100000 STRATEGIES = ['sqlite'] # sqlite coin chooser is in database.py def strategy(method): STRATEGIES.append(method.__name__) return method class CoinSelector: def __init__(self, target: int, cost_of_change: int, seed: str = None) -> None: self.target = target self.cost_of_change = cost_of_change self.exact_match = False self.tries = 0 self.random = Random(seed) if seed is not None: self.random.seed(seed, version=1) def select( self, txos: List[OutputEffectiveAmountEstimator], strategy_name: str = None) -> List[OutputEffectiveAmountEstimator]: if not txos: return [] available = sum(c.effective_amount for c in txos) if self.target > available: return [] return getattr(self, strategy_name or "standard")(txos, available) @strategy def prefer_confirmed(self, txos: List[OutputEffectiveAmountEstimator], available: int) -> List[OutputEffectiveAmountEstimator]: return ( self.only_confirmed(txos, available) or self.standard(txos, available) ) @strategy def only_confirmed(self, txos: List[OutputEffectiveAmountEstimator], _) -> List[OutputEffectiveAmountEstimator]: confirmed = [t for t in txos if t.txo.tx_ref and t.txo.tx_ref.height > 0] if not confirmed: return [] confirmed_available = sum(c.effective_amount for c in confirmed) if self.target > confirmed_available: return [] return self.standard(confirmed, confirmed_available) @strategy def standard(self, txos: List[OutputEffectiveAmountEstimator], available: int) -> List[OutputEffectiveAmountEstimator]: return ( self.branch_and_bound(txos, available) or self.closest_match(txos, available) or self.random_draw(txos, available) ) @strategy def branch_and_bound(self, txos: List[OutputEffectiveAmountEstimator], available: int) -> List[OutputEffectiveAmountEstimator]: # see bitcoin implementation for more info: # https://github.com/bitcoin/bitcoin/blob/master/src/wallet/coinselection.cpp txos.sort(reverse=True) current_value = 0 current_available_value = available current_selection: List[bool] = [] best_waste = self.cost_of_change best_selection: List[bool] = [] while self.tries < MAXIMUM_TRIES: self.tries += 1 backtrack = False if current_value + current_available_value < self.target or \ current_value > self.target + self.cost_of_change: backtrack = True elif current_value >= self.target: new_waste = current_value - self.target if new_waste <= best_waste: best_waste = new_waste best_selection = current_selection[:] backtrack = True if backtrack: while current_selection and not current_selection[-1]: current_selection.pop() current_available_value += txos[len(current_selection)].effective_amount if not current_selection: break current_selection[-1] = False utxo = txos[len(current_selection) - 1] current_value -= utxo.effective_amount else: utxo = txos[len(current_selection)] current_available_value -= utxo.effective_amount previous_utxo = txos[len(current_selection) - 1] if current_selection else None if current_selection and not current_selection[-1] and previous_utxo and \ utxo.effective_amount == previous_utxo.effective_amount and \ utxo.fee == previous_utxo.fee: current_selection.append(False) else: current_selection.append(True) current_value += utxo.effective_amount if best_selection: self.exact_match = True return [ txos[i] for i, include in enumerate(best_selection) if include ] return [] @strategy def closest_match(self, txos: List[OutputEffectiveAmountEstimator], _) -> List[OutputEffectiveAmountEstimator]: """ Pick one UTXOs that is larger than the target but with the smallest change. """ target = self.target + self.cost_of_change smallest_change = None best_match = None for txo in txos: if txo.effective_amount >= target: change = txo.effective_amount - target if smallest_change is None or change < smallest_change: smallest_change, best_match = change, txo return [best_match] if best_match else [] @strategy def random_draw(self, txos: List[OutputEffectiveAmountEstimator], _) -> List[OutputEffectiveAmountEstimator]: """ Accumulate UTXOs at random until there is enough to cover the target. """ target = self.target + self.cost_of_change self.random.shuffle(txos, random=self.random.random) selection = [] amount = 0 for coin in txos: selection.append(coin) amount += coin.effective_amount if amount >= target: return selection return []