import os import requests from urllib.parse import unquote, urlparse from tqdm import tqdm import json import re import time import math ### model_utils-v0.2 by lutzapps, Oct 30th 2024 ### # lutzapps - modify for new shared_models module and overwrite for this module from utils.shared_models import (ensure_shared_models_folders, update_model_symlinks, SHARED_MODELS_DIR) from utils.websocket_utils import send_websocket_message, active_websockets #SHARED_MODELS_DIR = '/workspace/shared_models' # this global var is now owned by the 'shared_models' module # lutzapps - modify this CivitAI model_type mapping to the new SHARED_MODEL_FOLDERS map MODEL_TYPE_MAPPING = { # CivitAI-Modeltype: SHARED_MODEL_FOLDERS 'Checkpoint': 'ckpt', #'Stable-diffusion', # not clear name for model_type 'LORA': 'loras', #'Lora', # now lowercase and plural 'LoCon': 'loras', #'Lora', # now lowercase and plural 'TextualInversion': 'embeddings', 'VAE': 'vae', #'VAE', # now lowercase 'Hypernetwork': 'hypernetworks', 'AestheticGradient': 'embeddings', #'aesthetic_embeddings', # store together with "embeddings" 'ControlNet': 'controlnet', 'Upscaler': 'upscale_models' #'ESRGAN' # there are probably other upscalers not based on ESRGAN } def ensure_shared_folder_exists(): # lutzapps - replace with new shared_models code #for folder in ['Stable-diffusion', 'Lora', 'embeddings', 'VAE', 'hypernetworks', 'aesthetic_embeddings', 'controlnet', 'ESRGAN']: # os.makedirs(os.path.join(SHARED_MODELS_DIR, folder), exist_ok=True) ensure_shared_models_folders() def check_civitai_url(url): prefix = "civitai.com" try: if prefix in url: if "civitai.com/api/download" in url: version_id = url.strip("/").split("/")[-1] return False, True, None, int(version_id) subpath = url[url.find(prefix) + len(prefix):].strip("/") url_parts = subpath.split("?") if len(url_parts) > 1: model_id = url_parts[0].split("/")[1] version_id = url_parts[1].split("=")[1] return True, False, int(model_id), int(version_id) else: model_id = subpath.split("/")[1] return True, False, int(model_id), None except (ValueError, IndexError): print("Error parsing Civitai model URL") return False, False, None, None def check_huggingface_url(url): parsed_url = urlparse(url) if parsed_url.netloc not in ["huggingface.co", "huggingface.com"]: return False, None, None, None, None path_parts = [p for p in parsed_url.path.split("/") if p] if len(path_parts) < 5 or (path_parts[2] != "resolve" and path_parts[2] != "blob"): return False, None, None, None, None repo_id = f"{path_parts[0]}/{path_parts[1]}" branch_name = path_parts[3] remaining_path = "/".join(path_parts[4:]) folder_name = os.path.dirname(remaining_path) if "/" in remaining_path else None filename = unquote(os.path.basename(remaining_path)) return True, repo_id, filename, folder_name, branch_name def download_model(url, model_name, model_type, civitai_token=None, hf_token=None, version_id=None, file_index=None): ensure_shared_folder_exists() is_civitai, is_civitai_api, model_id, _ = check_civitai_url(url) is_huggingface, repo_id, hf_filename, hf_folder_name, hf_branch_name = check_huggingface_url(url) # TODO: double call if is_civitai or is_civitai_api: if not civitai_token: return False, "Civitai token is required for downloading from Civitai" success, message = download_civitai_model(url, model_name, model_type, civitai_token, version_id, file_index) elif is_huggingface: success, message = download_huggingface_model(url, model_name, model_type, repo_id, hf_filename, hf_folder_name, hf_branch_name, hf_token) else: return False, "Unsupported URL" if success: send_websocket_message('model_download_progress', { 'percentage': 100, 'stage': 'Complete', 'message': 'Download complete and symlinks updated' }) return success, message # lutzapps - added SHA256 checks for already existing ident and downloaded HuggingFace model def download_civitai_model(url, model_name, model_type, civitai_token, version_id=None, file_index=None): try: is_civitai, is_civitai_api, model_id, url_version_id = check_civitai_url(url) headers = {'Authorization': f'Bearer {civitai_token}'} if is_civitai_api: api_url = f"https://civitai.com/api/v1/model-versions/{url_version_id}" else: api_url = f"https://civitai.com/api/v1/models/{model_id}" response = requests.get(api_url, headers=headers) response.raise_for_status() model_data = response.json() if is_civitai_api: version_data = model_data model_data = version_data['model'] else: if version_id: version_data = next((v for v in model_data['modelVersions'] if v['id'] == version_id), None) elif url_version_id: version_data = next((v for v in model_data['modelVersions'] if v['id'] == url_version_id), None) else: version_data = model_data['modelVersions'][0] if not version_data: return False, f"Version ID {version_id or url_version_id} not found for this model." civitai_model_type = model_data['type'] model_type = MODEL_TYPE_MAPPING.get(civitai_model_type, 'Stable-diffusion') files = version_data['files'] if file_index is not None and 0 <= file_index < len(files): file_to_download = files[file_index] elif len(files) > 1: # If there are multiple files and no specific file was chosen, ask the user to choose file_options = [{'name': f['name'], 'size': f['sizeKB'], 'type': f['type']} for f in files] return True, { 'choice_required': { 'type': 'file', 'model_id': model_id, 'version_id': version_data['id'], 'files': file_options } } else: civitai_file = files[0] # that is the metadata civitai_file download_url = civitai_file['downloadUrl'] if not model_name: model_name = civitai_file['name'] model_path = os.path.join(SHARED_MODELS_DIR, model_type, model_name) platformInfo = { "platform_name": 'civitai', "civitai_file": civitai_file # civitai_file metadata dictionary } # call shared function for "huggingface" and "civitai" for SHA256 support and "Model Downloader UI" extended support download_sha256_hash, found_ident_local_model, message = get_modelfile_hash_and_ident_existing_modelfile_exists( model_name, model_type, model_path, # pass local workspace vars, then platform specific vars as dictionary platformInfo) # [str, bool, str] if found_ident_local_model: return True, message # model_path does NOT exist - run with original code os.makedirs(os.path.dirname(model_path), exist_ok=True) # lutzapps - add SHA256 check for download_sha256_hash is handled after download finished in download_file() return download_file(download_url, download_sha256_hash, model_path, headers) # [bool, str] except Exception as e: # requests.RequestException as e: return False, f"Exception downloading from CivitAI: {str(e)}" # lutzapps - calculate the SHA256 hash string of a file def get_sha256_hash_from_file(file_path:str) -> tuple[bool, str]: import hashlib # support SHA256 checks try: sha256_hash = hashlib.sha256() with open(file_path, "rb") as f: # read and update hash string value in blocks of 4K for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) return True, sha256_hash.hexdigest().upper() except Exception as e: return False, str(e) # lutzapps - support SHA256 Hash check of already locally existing modelfile against its metadata hash before downloading is needed # shared function for "huggingface" and "civitai" called by download_huggingface_model() and download_civitai_model() def get_modelfile_hash_and_ident_existing_modelfile_exists(model_name:str, model_type:str, model_path:str, platformInfo:dict) -> tuple[bool, str, str]: try: # update (and remember) the selected index of the modelType select list of the "Model Downloader" message = f"Select the ModelType '{model_type}' to download" print(message) send_websocket_message('extend_ui_helper', { 'cmd': 'selectModelType', 'model_type': f'{model_type}', # e.g. "loras" or "vae" 'message': message } ) # get the SHA256 hash - used for compare against existing or downloaded model platform_name = platformInfo['platform_name'].lower() # currently "civitai" or "huggingface", but could be extendend print(f"\nPlatform: {platform_name}") match platform_name: case "huggingface": # get the platform-specific passed variables for "huggingface" hf_token = platformInfo['hf_token'] repo_id = platformInfo['repo_id'] hf_filename = platformInfo['hf_filename'] #from huggingface_hub import hf_hub_download # lutzapps - to get SHA256 hash from model from huggingface_hub import ( # HfApi, # optional when not calling globally get_paths_info #list_files_info #DEPRECATED/MISSING: list_files_info => get_paths_info ) from huggingface_hub.hf_api import ( RepoFile, RepoFolder, BlobLfsInfo ) ## optionally configure a HfApi client instead of calling globally # hf_api = HfApi( # endpoint = "https://huggingface.co", # can be a Private Hub endpoint # token = hf_token, # token is not persisted on the machine # ) print(f"getting SHA256 Hash for '{model_name}' from repo {repo_id}/{hf_filename}") # HfApi.list_files_info deprecated -> HfApi.get_paths_info (runs into exception, as connot be imported as missing) #files_info = hf_api.list_files_info(repo_id, hf_filename, expand=True) #paths_info = hf_api.get_paths_info(repo_id, hf_filename, expand=True) # use via HfApi paths_info = get_paths_info(repo_id, hf_filename, expand=True) # use global (works fine) repo_file = paths_info[0] # RepoFile or RepoFolder class instance # check for RepoFolder or NON-LFS if isinstance(repo_file, RepoFolder): raise NotImplementedError("Downloading a folder is not implemented.") if not repo_file.lfs: raise NotImplementedError("Copying a non-LFS file is not implemented.") lfs = repo_file.lfs # BlobLfsInfo class instance download_sha256_hash = lfs.sha256.upper() print(f"Metadata from RepoFile LFS '{repo_file.rfilename}'") print(f"SHA256: {download_sha256_hash}") case "civitai": # get the platform-specific passed variables for "civitai" civitai_file = platformInfo['civitai_file'] # civitai_file metadata dictionary # get the SHA256 hash - used for compare against existing or downloaded model download_sha256_hash = civitai_file['hashes']['SHA256'] # civitai_file = passed file ### END platform specific code # check if model file already exists if not os.path.exists(model_path): message = f"No local model '{os.path.basename(model_path)}' installed" print(message) return download_sha256_hash, False, message message = f"Model already exists: {os.path.basename(model_path)}, SHA256 check..." print(message) send_websocket_message('model_download_progress', { 'percentage': 0, # ugly 'stage': 'Downloading', 'message': message }) # check if existing model is ident with model to download # this can *take a while* for big models, but even better than to unnecessarily redownload the model successfull_HashGeneration, model_sha256_hash = get_sha256_hash_from_file(model_path) # if NOT successful, the hash contains the Exception print(f"SHA256 hash generated from local file: '{model_path}'\n{model_sha256_hash}") if successfull_HashGeneration and model_sha256_hash == download_sha256_hash: message = f"Existing and ident model aleady found for '{os.path.basename(model_path)}'" print(message) send_websocket_message('model_download_progress', { 'percentage': 100, 'stage': 'Complete', 'message': message }) return download_sha256_hash, successfull_HashGeneration, message else: if successfull_HashGeneration: # the generated SHA256 file model Hash did not match against the metadata hash message = f"Local installed model '{os.path.basename(model_path)}' has DIFFERENT \nSHA256: {model_sha256_hash}" print(message) return download_sha256_hash, False, message else: # NOT successful, the hash contains the Exception error_msg = model_sha256_hash error_msg = f"Exception occured while generating the SHA256 hash for '{model_path}':\n{error_msg}" print(error_msg) except Exception as e: error_msg = f"Exception when downloading from {platform_name}: {str(e)}" return "", False, error_msg # hash, identfile, message # lutzapps - added SHA256 checks for already existing ident and downloaded HuggingFace model def download_huggingface_model(url, model_name, model_type, repo_id, hf_filename, hf_folder_name, hf_branch_name, hf_token=None): try: from huggingface_hub import hf_hub_download if not model_name: model_name = hf_filename model_path = os.path.join(SHARED_MODELS_DIR, model_type, model_name) platformInfo = { "platform_name": 'huggingface', "hf_token": hf_token, "repo_id": repo_id, "hf_filename": hf_filename } # call shared function for "huggingface" and "civitai" for SHA256 support and "Model Downloader UI" extended support download_sha256_hash, found_ident_local_model, message = get_modelfile_hash_and_ident_existing_modelfile_exists( model_name, model_type, model_path, # pass local workspace vars, then platform specific vars as dictionary platformInfo) # [str, bool, str] if found_ident_local_model: return True, message # model_path does NOT exist - run with original code os.makedirs(os.path.dirname(model_path), exist_ok=True) send_websocket_message('model_download_progress', { 'percentage': 0, 'stage': 'Downloading', 'message': f'Starting download from Hugging Face: {repo_id}' }) kwargs = { 'repo_id': repo_id, 'filename': hf_filename, 'subfolder': hf_folder_name, 'revision': hf_branch_name, 'local_dir': os.path.dirname(model_path) #'local_dir_use_symlinks': False # deprecated, should be removed } if hf_token: kwargs['token'] = hf_token file_path = hf_hub_download(**kwargs) ### HF_DOWNLOAD_START ### HF_DOWNLOAD COMPLETE # SHA256 Hash checks of downloaded modelfile against its metadata hash # call shared function for "huggingface" and "civitai" for SHA256 support and "Model Downloader UI" extended support return check_downloaded_modelfile(file_path, download_sha256_hash, "huggingface") # [bool, str] except Exception as e: return False, f"Exception when downloading from 'HuggingFace': {str(e)}" # lutzapps - added SHA256 check for downloaded CivitAI model def download_file(url, download_sha256_hash, file_path, headers=None): try: response = requests.get(url, stream=True, headers=headers) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) block_size = 8192 downloaded_size = 0 start_time = time.time() with open(file_path, 'wb') as file: ### CIVITAI_DOWNLOAD for data in response.iter_content(block_size): size = file.write(data) downloaded_size += size current_time = time.time() elapsed_time = current_time - start_time if elapsed_time > 0: speed = downloaded_size / elapsed_time percentage = (downloaded_size / total_size) * 100 if total_size > 0 else 0 eta = (total_size - downloaded_size) / speed if speed > 0 else 0 send_websocket_message('model_download_progress', { 'percentage': round(percentage, 2), 'speed': f"{speed / (1024 * 1024):.2f} MB/s", 'eta': int(eta), 'stage': 'Downloading', 'message': f'Downloaded {format_size(downloaded_size)} / {format_size(total_size)}' }) ### CIVITAI_DOWNLOAD COMPLETE # SHA256 Hash checks of downloaded modelfile against its metadata hash # call shared function for "huggingface" and "civitai" for SHA256 support and "Model Downloader UI" extended support return check_downloaded_modelfile(file_path, download_sha256_hash, "civitai") # [bool, str] except Exception as e: return False, f"Exception when downloading from CivitAI: {str(e)}" # lutzapps - SHA256 Hash checks of downloaded modelfile against its metadata hash # shared function for "huggingface" and "civitai" for SHA256 support and "Model Downloader UI" extended support def check_downloaded_modelfile(model_path:str, download_sha256_hash:str, platform_name:str) -> tuple[bool, str]: try: # lutzapps - SHA256 check for download_sha256_hash if download_sha256_hash == "": return False, f"Downloaded model could not be verified with Metadata, no SHA256 hash found on '{platform_name}'" # check if downloaded local model file is ident with HF model download_sha256_hash metadata # this can take a while for big models, but even better than to have a corrupted model send_websocket_message('model_download_progress', { 'percentage': 90, # change back from 100 to 90 (ugly) 'stage': 'Complete', # leave it as 'Complete' as this "clears" SPEED/ETA Divs 'message': f'SHA256 Check for Model: {os.path.basename(model_path)}' }) successfull_HashGeneration, model_sha256_hash = get_sha256_hash_from_file(model_path) if successfull_HashGeneration and model_sha256_hash == download_sha256_hash: send_websocket_message('model_download_progress', { 'percentage': 100, 'stage': 'Complete', 'message': f'Download complete: {os.path.basename(model_path)}' }) update_model_symlinks() # create symlinks for this new downloaded model for all installed apps return True, f"Successfully downloaded (SHA256 checked, and symlinked) '{os.path.basename(model_path)}' from {platform_name}" else: if successfull_HashGeneration: # the generated SHA256 file model Hash did not match against the metadata hash message = f"The downloaded model '{os.path.basename(model_path)}' has DIFFERENT \nSHA256: {model_sha256_hash} as stored on {platform_name}\nFile is possibly corrupted and was DELETED!" print(message) os.remove(model_path) # delete corrupted, downloaded file return download_sha256_hash, False, message else: # NOT successful, the hash contains the Exception error_msg = model_sha256_hash error_msg = f"Exception occured while generating the SHA256 hash for '{model_path}':\n{error_msg}" print(error_msg) except Exception as e: error_msg = f"Exception when downloading from {platform_name}: {str(e)}" return False, error_msg # smaller helper functions def get_civitai_file_size(url, token): headers = {'Authorization': f'Bearer {token}'} try: response = requests.head(url, headers=headers, allow_redirects=True) return int(response.headers.get('content-length', 0)) except: return None def get_huggingface_file_size(repo_id, filename, folder_name, branch_name, token): from huggingface_hub import hf_hub_url, HfApi try: api = HfApi() file_info = api.hf_hub_url(repo_id, filename, subfolder=folder_name, revision=branch_name) response = requests.head(file_info, headers={'Authorization': f'Bearer {token}'} if token else None) return int(response.headers.get('content-length', 0)) except: return None def format_size(size_in_bytes): if size_in_bytes == 0: return "0 B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_in_bytes, 1024))) p = math.pow(1024, i) s = round(size_in_bytes / p, 2) return f"{s} {size_name[i]}"