bitcoinjs-lib/src/ecdsa.js

246 lines
5.8 KiB
JavaScript
Raw Normal View History

var assert = require('assert')
2015-03-17 02:31:53 +01:00
var createHmac = require('create-hmac')
2014-12-23 05:08:20 +01:00
var typeForce = require('typeforce')
2014-04-21 18:19:30 +02:00
2014-05-03 04:04:54 +02:00
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
// https://tools.ietf.org/html/rfc6979#section-3.2
2015-02-23 00:36:57 +01:00
function deterministicGenerateK (curve, hash, d, checkSig) {
2014-12-23 05:08:20 +01:00
typeForce('Buffer', hash)
typeForce('BigInteger', d)
2014-09-15 07:00:13 +02:00
typeForce('Function', checkSig)
// sanity check
2014-05-23 09:18:32 +02:00
assert.equal(hash.length, 32, 'Hash must be 256 bit')
var x = d.toBuffer(32)
2014-05-23 09:18:32 +02:00
var k = new Buffer(32)
var v = new Buffer(32)
2015-01-04 02:29:01 +01:00
// Step A, ignored as hash already provided
// Step B
2014-05-23 09:18:32 +02:00
v.fill(1)
// Step C
k.fill(0)
// Step D
2015-03-17 02:31:53 +01:00
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
2015-03-17 02:31:53 +01:00
v = createHmac('sha256', k).update(v).digest()
2014-05-23 09:18:32 +02:00
// Step F
2015-03-17 02:31:53 +01:00
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
2015-03-17 02:31:53 +01:00
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
2015-03-17 02:31:53 +01:00
v = createHmac('sha256', k).update(v).digest()
2014-05-23 09:18:32 +02:00
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while ((T.signum() <= 0) || (T.compareTo(curve.n) >= 0) || !checkSig(T)) {
2015-03-17 02:31:53 +01:00
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
2015-03-17 02:31:53 +01:00
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
2015-03-17 02:31:53 +01:00
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
2014-05-23 09:18:32 +02:00
return T
2014-05-23 09:18:32 +02:00
}
2015-02-23 00:36:57 +01:00
function sign (curve, hash, d) {
2015-06-23 07:32:26 +02:00
typeForce('Curve', curve)
typeForce('Buffer', hash)
typeForce('BigInteger', d)
var e = BigInteger.fromBuffer(hash)
2014-06-15 17:36:05 +02:00
var n = curve.n
var G = curve.G
2015-04-10 03:07:08 +02:00
var r, s
2015-02-23 00:36:57 +01:00
deterministicGenerateK(curve, hash, d, function (k) {
var Q = G.multiply(k)
2015-04-10 03:07:08 +02:00
if (curve.isInfinity(Q)) return false
r = Q.affineX.mod(n)
2015-04-10 03:07:08 +02:00
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
2015-04-10 03:07:08 +02:00
if (s.signum() === 0) return false
return true
})
2014-05-23 09:18:32 +02:00
var N_OVER_TWO = n.shiftRight(1)
2014-05-23 09:18:32 +02:00
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
2014-05-23 09:18:32 +02:00
}
2015-04-10 09:22:00 +02:00
function verify (curve, hash, signature, Q) {
2015-06-23 07:32:26 +02:00
typeForce('Curve', curve)
typeForce('Buffer', hash)
typeForce('ECSignature', signature)
typeForce('Point', Q)
2014-06-15 17:36:05 +02:00
var n = curve.n
var G = curve.G
2014-05-24 08:25:38 +02:00
var r = signature.r
var s = signature.s
2014-05-23 09:18:32 +02:00
2014-07-30 07:01:43 +02:00
// 1.4.1 Enforce r and s are both integers in the interval [1, n 1]
2014-07-29 15:45:10 +02:00
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
2015-04-10 09:22:00 +02:00
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
2014-05-24 06:33:02 +02:00
2014-07-30 07:01:43 +02:00
// 1.4.4 Compute u1 = es^1 mod n
// u2 = rs^1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
2014-07-30 07:01:43 +02:00
var R = G.multiplyTwo(u1, Q, u2)
2014-07-30 07:01:43 +02:00
// 1.4.5 (cont.) Enforce R is not at infinity
if (curve.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
2015-03-02 03:25:09 +01:00
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
2014-05-23 09:18:32 +02:00
return v.equals(r)
}
2014-05-23 09:18:32 +02:00
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
2015-02-23 00:36:57 +01:00
function recoverPubKey (curve, e, signature, i) {
2015-06-23 07:32:26 +02:00
typeForce('Curve', curve)
typeForce('BigInteger', e)
typeForce('ECSignature', signature)
typeForce('Number', i)
assert.strictEqual(i & 3, i, 'Recovery param is more than two bits')
2014-05-23 09:18:32 +02:00
2014-07-29 15:45:10 +02:00
var n = curve.n
var G = curve.G
2014-05-24 08:25:38 +02:00
var r = signature.r
var s = signature.s
2014-07-29 15:45:10 +02:00
assert(r.signum() > 0 && r.compareTo(n) < 0, 'Invalid r value')
assert(s.signum() > 0 && s.compareTo(n) < 0, 'Invalid s value')
2014-05-23 09:18:32 +02:00
// A set LSB signifies that the y-coordinate is odd
2014-06-21 14:33:26 +02:00
var isYOdd = i & 1
2014-05-23 09:18:32 +02:00
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
2014-05-23 09:18:32 +02:00
var x = isSecondKey ? r.add(n) : r
2014-06-21 14:33:26 +02:00
var R = curve.pointFromX(isYOdd, x)
2011-05-04 18:02:56 +02:00
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
assert(curve.isInfinity(nR), 'nR is not a valid curve point')
2011-05-04 18:02:56 +02:00
2015-04-10 03:07:30 +02:00
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
2014-05-23 09:18:32 +02:00
var eNeg = e.negate().mod(n)
2012-01-11 02:40:45 +01:00
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
2014-05-23 09:18:32 +02:00
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
2015-04-10 03:07:30 +02:00
2014-06-07 08:24:27 +02:00
curve.validate(Q)
2014-05-23 09:18:32 +02:00
return Q
}
2014-05-23 09:18:32 +02:00
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
2015-02-23 00:36:57 +01:00
function calcPubKeyRecoveryParam (curve, e, signature, Q) {
2015-06-23 07:32:26 +02:00
typeForce('Curve', curve)
typeForce('BigInteger', e)
typeForce('ECSignature', signature)
typeForce('Point', Q)
2014-05-23 09:18:32 +02:00
for (var i = 0; i < 4; i++) {
2014-06-07 08:24:27 +02:00
var Qprime = recoverPubKey(curve, e, signature, i)
2014-05-23 09:18:32 +02:00
// 1.6.2 Verify Q
2014-05-23 09:18:32 +02:00
if (Qprime.equals(Q)) {
return i
}
}
2012-01-11 02:40:45 +01:00
2014-05-23 09:18:32 +02:00
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
2014-05-24 08:25:38 +02:00
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
2015-04-10 09:22:00 +02:00
verify: verify
}