bitcoinjs-lib/src/ecdsa.js

293 lines
7.6 KiB
JavaScript
Raw Normal View History

var sec = require('./jsbn/sec');
var util = require('./util');
var SecureRandom = require('./jsbn/rng');
var BigInteger = require('./jsbn/jsbn');
2011-05-04 18:02:56 +02:00
var ECPointFp = require('./jsbn/ec').ECPointFp;
2011-05-04 18:02:56 +02:00
var rng = new SecureRandom();
var ecparams = sec("secp256k1");
var P_OVER_FOUR = null;
2011-05-04 18:02:56 +02:00
function implShamirsTrick(P, k, Q, l)
{
var m = Math.max(k.bitLength(), l.bitLength());
var Z = P.add2D(Q);
var R = P.curve.getInfinity();
2011-05-04 18:02:56 +02:00
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D();
2011-05-04 18:02:56 +02:00
R.z = BigInteger.ONE;
2012-01-11 02:40:45 +01:00
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z);
} else {
R = R.add2D(P);
}
2012-01-11 02:40:45 +01:00
} else {
if (l.testBit(i)) {
R = R.add2D(Q);
}
2012-01-11 02:40:45 +01:00
}
}
return R;
2011-05-04 18:02:56 +02:00
};
var ECDSA = {
getBigRandom: function (limit) {
return new BigInteger(limit.bitLength(), rng)
.mod(limit.subtract(BigInteger.ONE))
.add(BigInteger.ONE)
;
},
sign: function (hash, priv) {
var d = priv;
var n = ecparams.getN();
var e = BigInteger.fromByteArrayUnsigned(hash);
do {
var k = ECDSA.getBigRandom(n);
var G = ecparams.getG();
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
return ECDSA.serializeSig(r, s);
},
verify: function (hash, sig, pubkey) {
var r,s;
if (util.isArray(sig)) {
var obj = ECDSA.parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw new Error("Invalid value for signature");
2012-01-11 02:40:45 +01:00
}
2011-05-04 18:02:56 +02:00
var Q;
if (pubkey instanceof ECPointFp) {
Q = pubkey;
} else if (util.isArray(pubkey)) {
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey);
} else {
throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp");
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return ECDSA.verifyRaw(e, r, s, Q);
},
verifyRaw: function (e, r, s, Q) {
var n = ecparams.getN();
var G = ecparams.getG();
if (r.compareTo(BigInteger.ONE) < 0 ||
r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 ||
s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
},
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
serializeSig: function (r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
},
/**
* Parses a byte array containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
parseSig: function (sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
//if (cursor != sig.length)
// throw new Error("Extra bytes in signature");
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {r: r, s: s};
},
parseSigCompact: function (sig) {
if (sig.length !== 65) {
throw new Error("Signature has the wrong length");
2012-01-11 02:40:45 +01:00
}
// Signature is prefixed with a type byte storing three bits of
// information.
var i = sig[0] - 27;
if (i < 0 || i > 7) {
throw new Error("Invalid signature type");
}
var n = ecparams.getN();
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
return {r: r, s: s, i: i};
},
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
recoverPubKey: function (r, s, hash, i) {
// The recovery parameter i has two bits.
i = i & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var isYEven = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
var n = ecparams.getN();
var G = ecparams.getG();
var curve = ecparams.getCurve();
var p = curve.getQ();
var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
// If beta is even, but y isn't or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
// 1.4 Check that nR is at infinity
var R = new ECPointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y));
R.validate();
2011-05-04 18:02:56 +02:00
// 1.5 Compute e from M
var e = BigInteger.fromByteArrayUnsigned(hash);
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
2011-05-04 18:02:56 +02:00
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n);
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
2012-01-11 02:40:45 +01:00
Q.validate();
if (!ECDSA.verifyRaw(e, r, s, Q)) {
throw new Error("Pubkey recovery unsuccessful");
}
// TODO (shtylman) this is stupid because this file and eckey
// have circular dependencies
var ECKey = require('./eckey');
var pubKey = ECKey();
pubKey.pub = Q;
return pubKey;
},
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
calcPubkeyRecoveryParam: function (address, r, s, hash)
2012-01-11 02:40:45 +01:00
{
for (var i = 0; i < 4; i++) {
var pubkey = ECDSA.recoverPubKey(r, s, hash, i);
if (pubkey.getBitcoinAddress().toString() == address) {
return i;
}
2012-01-11 02:40:45 +01:00
}
throw new Error("Unable to find valid recovery factor");
}
};
2012-01-11 02:40:45 +01:00
module.exports = ECDSA;
2011-05-04 18:02:56 +02:00