use ecurve instead of custom ec
This commit is contained in:
parent
de8b6a9931
commit
4ce9015f3b
14 changed files with 82 additions and 735 deletions
419
src/ec.js
419
src/ec.js
|
@ -1,419 +0,0 @@
|
|||
// Basic Javascript Elliptic Curve implementation
|
||||
// Ported loosely from BouncyCastle's Java EC code
|
||||
// Only Fp curves implemented for now
|
||||
|
||||
var assert = require('assert')
|
||||
var BigInteger = require('bigi')
|
||||
|
||||
// constants
|
||||
var THREE = BigInteger.valueOf(3)
|
||||
|
||||
function ECFieldElementFp(q,x) {
|
||||
this.x = x
|
||||
// TODO if (x.compareTo(q) >= 0) error
|
||||
this.q = q
|
||||
}
|
||||
|
||||
function feFpEquals(other) {
|
||||
if (other == this) return true
|
||||
return (this.q.equals(other.q) && this.x.equals(other.x))
|
||||
}
|
||||
|
||||
function feFpToBigInteger() {
|
||||
return this.x
|
||||
}
|
||||
|
||||
function feFpNegate() {
|
||||
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
|
||||
}
|
||||
|
||||
function feFpAdd(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
|
||||
}
|
||||
|
||||
function feFpSubtract(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q))
|
||||
}
|
||||
|
||||
function feFpMultiply(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q))
|
||||
}
|
||||
|
||||
function feFpSquare() {
|
||||
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
|
||||
}
|
||||
|
||||
function feFpDivide(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q))
|
||||
}
|
||||
|
||||
ECFieldElementFp.prototype.equals = feFpEquals
|
||||
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
|
||||
ECFieldElementFp.prototype.negate = feFpNegate
|
||||
ECFieldElementFp.prototype.add = feFpAdd
|
||||
ECFieldElementFp.prototype.subtract = feFpSubtract
|
||||
ECFieldElementFp.prototype.multiply = feFpMultiply
|
||||
ECFieldElementFp.prototype.square = feFpSquare
|
||||
ECFieldElementFp.prototype.divide = feFpDivide
|
||||
|
||||
// ----------------
|
||||
// ECPointFp
|
||||
|
||||
// constructor
|
||||
function ECPointFp(curve,x,y,z) {
|
||||
this.curve = curve
|
||||
this.x = x
|
||||
this.y = y
|
||||
|
||||
// Projective coordinates: either zinv == null or z * zinv == 1
|
||||
// z and zinv are just BigIntegers, not fieldElements
|
||||
this.z = (z == undefined) ? BigInteger.ONE : z
|
||||
this.zinv = null
|
||||
|
||||
//TODO: compression flag
|
||||
}
|
||||
|
||||
function pointFpGetX() {
|
||||
if (this.zinv === null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q)
|
||||
}
|
||||
|
||||
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q))
|
||||
}
|
||||
|
||||
function pointFpGetY() {
|
||||
if (this.zinv === null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q)
|
||||
}
|
||||
|
||||
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q))
|
||||
}
|
||||
|
||||
function pointFpEquals(other) {
|
||||
if (other == this) return true
|
||||
if (this.isInfinity()) return other.isInfinity()
|
||||
if (other.isInfinity()) return this.isInfinity()
|
||||
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
var u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q)
|
||||
|
||||
if (u.signum() !== 0) return false
|
||||
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
var v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q)
|
||||
|
||||
return v.signum() === 0
|
||||
}
|
||||
|
||||
function pointFpIsInfinity() {
|
||||
if ((this.x === null) && (this.y === null)) return true
|
||||
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0
|
||||
}
|
||||
|
||||
function pointFpNegate() {
|
||||
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
|
||||
}
|
||||
|
||||
function pointFpAdd(b) {
|
||||
if (this.isInfinity()) return b
|
||||
if (b.isInfinity()) return this
|
||||
|
||||
var x1 = this.x.toBigInteger()
|
||||
var y1 = this.y.toBigInteger()
|
||||
var x2 = b.x.toBigInteger()
|
||||
var y2 = b.y.toBigInteger()
|
||||
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
var u = y2.multiply(this.z).subtract(y1.multiply(b.z)).mod(this.curve.q)
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
var v = x2.multiply(this.z).subtract(x1.multiply(b.z)).mod(this.curve.q)
|
||||
|
||||
if (v.signum() === 0) {
|
||||
if (u.signum() === 0) {
|
||||
return this.twice() // this == b, so double
|
||||
}
|
||||
|
||||
return this.curve.getInfinity() // this = -b, so infinity
|
||||
}
|
||||
|
||||
var v2 = v.square()
|
||||
var v3 = v2.multiply(v)
|
||||
var x1v2 = x1.multiply(v2)
|
||||
var zu2 = u.square().multiply(this.z)
|
||||
|
||||
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
||||
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q)
|
||||
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
||||
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q)
|
||||
// z3 = v^3 * z1 * z2
|
||||
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
|
||||
}
|
||||
|
||||
function pointFpTwice() {
|
||||
if (this.isInfinity()) return this
|
||||
if (this.y.toBigInteger().signum() === 0) return this.curve.getInfinity()
|
||||
|
||||
var x1 = this.x.toBigInteger()
|
||||
var y1 = this.y.toBigInteger()
|
||||
|
||||
var y1z1 = y1.multiply(this.z)
|
||||
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
|
||||
var a = this.curve.a.toBigInteger()
|
||||
|
||||
// w = 3 * x1^2 + a * z1^2
|
||||
var w = x1.square().multiply(THREE)
|
||||
|
||||
if (a.signum() !== 0) {
|
||||
w = w.add(this.z.square().multiply(a))
|
||||
}
|
||||
|
||||
w = w.mod(this.curve.q)
|
||||
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
||||
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q)
|
||||
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
||||
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q)
|
||||
// z3 = 8 * (y1 * z1)^3
|
||||
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q)
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
|
||||
}
|
||||
|
||||
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
||||
// TODO: modularize the multiplication algorithm
|
||||
function pointFpMultiply(k) {
|
||||
if (this.isInfinity()) return this
|
||||
if (k.signum() === 0) return this.curve.getInfinity()
|
||||
|
||||
var e = k
|
||||
var h = e.multiply(THREE)
|
||||
|
||||
var neg = this.negate()
|
||||
var R = this
|
||||
|
||||
for (var i = h.bitLength() - 2; i > 0; --i) {
|
||||
R = R.twice()
|
||||
|
||||
var hBit = h.testBit(i)
|
||||
var eBit = e.testBit(i)
|
||||
|
||||
if (hBit != eBit) {
|
||||
R = R.add(hBit ? this : neg)
|
||||
}
|
||||
}
|
||||
|
||||
return R
|
||||
}
|
||||
|
||||
// Compute this*j + x*k (simultaneous multiplication)
|
||||
function pointFpMultiplyTwo(j,x,k) {
|
||||
var i
|
||||
|
||||
if (j.bitLength() > k.bitLength())
|
||||
i = j.bitLength() - 1
|
||||
else
|
||||
i = k.bitLength() - 1
|
||||
|
||||
var R = this.curve.getInfinity()
|
||||
var both = this.add(x)
|
||||
while (i >= 0) {
|
||||
R = R.twice()
|
||||
if (j.testBit(i)) {
|
||||
if (k.testBit(i)) {
|
||||
R = R.add(both)
|
||||
}
|
||||
else {
|
||||
R = R.add(this)
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (k.testBit(i)) {
|
||||
R = R.add(x)
|
||||
}
|
||||
}
|
||||
--i
|
||||
}
|
||||
|
||||
return R
|
||||
}
|
||||
|
||||
ECPointFp.prototype.getX = pointFpGetX
|
||||
ECPointFp.prototype.getY = pointFpGetY
|
||||
ECPointFp.prototype.equals = pointFpEquals
|
||||
ECPointFp.prototype.isInfinity = pointFpIsInfinity
|
||||
ECPointFp.prototype.negate = pointFpNegate
|
||||
ECPointFp.prototype.add = pointFpAdd
|
||||
ECPointFp.prototype.twice = pointFpTwice
|
||||
ECPointFp.prototype.multiply = pointFpMultiply
|
||||
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
|
||||
|
||||
// ----------------
|
||||
// ECCurveFp
|
||||
|
||||
// constructor
|
||||
function ECCurveFp(q,a,b) {
|
||||
this.q = q
|
||||
this.a = this.fromBigInteger(a)
|
||||
this.b = this.fromBigInteger(b)
|
||||
this.infinity = new ECPointFp(this, null, null)
|
||||
}
|
||||
|
||||
function curveFpGetQ() {
|
||||
return this.q
|
||||
}
|
||||
|
||||
function curveFpGetA() {
|
||||
return this.a
|
||||
}
|
||||
|
||||
function curveFpGetB() {
|
||||
return this.b
|
||||
}
|
||||
|
||||
function curveFpEquals(other) {
|
||||
if (other == this) return true
|
||||
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b))
|
||||
}
|
||||
|
||||
function curveFpGetInfinity() {
|
||||
return this.infinity
|
||||
}
|
||||
|
||||
function curveFpFromBigInteger(x) {
|
||||
return new ECFieldElementFp(this.q, x)
|
||||
}
|
||||
|
||||
ECCurveFp.prototype.getQ = curveFpGetQ
|
||||
ECCurveFp.prototype.getA = curveFpGetA
|
||||
ECCurveFp.prototype.getB = curveFpGetB
|
||||
ECCurveFp.prototype.equals = curveFpEquals
|
||||
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
|
||||
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
|
||||
|
||||
ECFieldElementFp.prototype.getByteLength = function () {
|
||||
return Math.floor((this.toBigInteger().bitLength() + 7) / 8)
|
||||
}
|
||||
|
||||
ECPointFp.prototype.getEncoded = function(compressed) {
|
||||
var x = this.getX().toBigInteger()
|
||||
var y = this.getY().toBigInteger()
|
||||
var buffer
|
||||
|
||||
// 0x02/0x03 | X
|
||||
if (compressed) {
|
||||
buffer = new Buffer(33)
|
||||
buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0)
|
||||
|
||||
// 0x04 | X | Y
|
||||
} else {
|
||||
buffer = new Buffer(65)
|
||||
buffer.writeUInt8(0x04, 0)
|
||||
|
||||
y.toBuffer(32).copy(buffer, 33)
|
||||
}
|
||||
|
||||
x.toBuffer(32).copy(buffer, 1)
|
||||
|
||||
return buffer
|
||||
}
|
||||
|
||||
ECPointFp.decodeFrom = function (curve, buffer) {
|
||||
var type = buffer.readUInt8(0)
|
||||
var compressed = type !== 0x04
|
||||
var x = BigInteger.fromBuffer(buffer.slice(1, 33))
|
||||
var y
|
||||
|
||||
if (compressed) {
|
||||
assert.equal(buffer.length, 33, 'Invalid sequence length')
|
||||
assert(type === 0x02 || type === 0x03, 'Invalid sequence tag')
|
||||
|
||||
var isYEven = (type === 0x02)
|
||||
var a = curve.getA().toBigInteger()
|
||||
var b = curve.getB().toBigInteger()
|
||||
var p = curve.getQ()
|
||||
|
||||
// We precalculate (p + 1) / 4 where p is the field order
|
||||
if (!curve.P_OVER_FOUR) {
|
||||
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
|
||||
}
|
||||
|
||||
// Convert x to point
|
||||
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
|
||||
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
|
||||
|
||||
// If beta is even, but y isn't, or vice versa, then convert it,
|
||||
// otherwise we're done and y == beta.
|
||||
y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
|
||||
|
||||
} else {
|
||||
assert.equal(buffer.length, 65, 'Invalid sequence length')
|
||||
|
||||
y = BigInteger.fromBuffer(buffer.slice(33))
|
||||
}
|
||||
|
||||
var Q = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
|
||||
|
||||
return {
|
||||
Q: Q,
|
||||
compressed: compressed
|
||||
}
|
||||
}
|
||||
|
||||
ECPointFp.prototype.isOnCurve = function () {
|
||||
var x = this.getX().toBigInteger()
|
||||
var y = this.getY().toBigInteger()
|
||||
var a = this.curve.getA().toBigInteger()
|
||||
var b = this.curve.getB().toBigInteger()
|
||||
var p = this.curve.getQ()
|
||||
var lhs = y.square().mod(p)
|
||||
var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p)
|
||||
return lhs.equals(rhs)
|
||||
}
|
||||
|
||||
ECPointFp.prototype.toString = function () {
|
||||
return '('+this.getX().toBigInteger().toString()+','+
|
||||
this.getY().toBigInteger().toString()+')'
|
||||
}
|
||||
|
||||
/**
|
||||
* Validate an elliptic curve point.
|
||||
*
|
||||
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
||||
*/
|
||||
ECPointFp.prototype.validate = function () {
|
||||
var n = this.curve.getQ()
|
||||
|
||||
// Check Q != O
|
||||
if (this.isInfinity()) {
|
||||
throw new Error("Point is at infinity.")
|
||||
}
|
||||
|
||||
// Check coordinate bounds
|
||||
var x = this.getX().toBigInteger()
|
||||
var y = this.getY().toBigInteger()
|
||||
if (x.compareTo(BigInteger.ONE) < 0 ||
|
||||
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
||||
throw new Error('x coordinate out of bounds')
|
||||
}
|
||||
if (y.compareTo(BigInteger.ONE) < 0 ||
|
||||
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
||||
throw new Error('y coordinate out of bounds')
|
||||
}
|
||||
|
||||
// Check y^2 = x^3 + ax + b (mod n)
|
||||
if (!this.isOnCurve()) {
|
||||
throw new Error("Point is not on the curve.")
|
||||
}
|
||||
|
||||
// Check nQ = 0 (Q is a scalar multiple of G)
|
||||
if (this.multiply(n).isInfinity()) {
|
||||
// TODO: This check doesn't work - fix.
|
||||
throw new Error("Point is not a scalar multiple of G.")
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
module.exports = ECCurveFp
|
||||
module.exports.ECPointFp = ECPointFp
|
55
src/ecdsa.js
55
src/ecdsa.js
|
@ -2,9 +2,9 @@ var assert = require('assert')
|
|||
var crypto = require('./crypto')
|
||||
|
||||
var BigInteger = require('bigi')
|
||||
var ECPointFp = require('./ec').ECPointFp
|
||||
var Point = require('ecurve').Point
|
||||
|
||||
function deterministicGenerateK(ecparams, hash, d) {
|
||||
function deterministicGenerateK(curve, hash, d) {
|
||||
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash)
|
||||
assert.equal(hash.length, 32, 'Hash must be 256 bit')
|
||||
assert(d instanceof BigInteger, 'Private key must be a BigInteger')
|
||||
|
@ -22,23 +22,23 @@ function deterministicGenerateK(ecparams, hash, d) {
|
|||
v = crypto.HmacSHA256(v, k)
|
||||
v = crypto.HmacSHA256(v, k)
|
||||
|
||||
var n = ecparams.getN()
|
||||
var n = curve.params.n
|
||||
var kB = BigInteger.fromBuffer(v).mod(n)
|
||||
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value')
|
||||
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value')
|
||||
assert(kB.compareTo(n) < 0, 'Invalid k value')
|
||||
|
||||
return kB
|
||||
}
|
||||
|
||||
function sign(ecparams, hash, d) {
|
||||
var k = deterministicGenerateK(ecparams, hash, d)
|
||||
function sign(curve, hash, d) {
|
||||
var k = deterministicGenerateK(curve, hash, d)
|
||||
|
||||
var n = ecparams.getN()
|
||||
var G = ecparams.getG()
|
||||
var n = curve.params.n
|
||||
var G = curve.params.G
|
||||
var Q = G.multiply(k)
|
||||
var e = BigInteger.fromBuffer(hash)
|
||||
|
||||
var r = Q.getX().toBigInteger().mod(n)
|
||||
var r = Q.affineX.mod(n)
|
||||
assert.notEqual(r.signum(), 0, 'Invalid R value')
|
||||
|
||||
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
|
||||
|
@ -54,15 +54,15 @@ function sign(ecparams, hash, d) {
|
|||
return {r: r, s: s}
|
||||
}
|
||||
|
||||
function verify(ecparams, hash, signature, Q) {
|
||||
function verify(curve, hash, signature, Q) {
|
||||
var e = BigInteger.fromBuffer(hash)
|
||||
|
||||
return verifyRaw(ecparams, e, signature, Q)
|
||||
return verifyRaw(curve, e, signature, Q)
|
||||
}
|
||||
|
||||
function verifyRaw(ecparams, e, signature, Q) {
|
||||
var n = ecparams.getN()
|
||||
var G = ecparams.getG()
|
||||
function verifyRaw(curve, e, signature, Q) {
|
||||
var n = curve.params.n
|
||||
var G = curve.params.G
|
||||
|
||||
var r = signature.r
|
||||
var s = signature.s
|
||||
|
@ -76,7 +76,7 @@ function verifyRaw(ecparams, e, signature, Q) {
|
|||
var u2 = r.multiply(c).mod(n)
|
||||
|
||||
var point = G.multiplyTwo(u1, Q, u2)
|
||||
var v = point.getX().toBigInteger().mod(n)
|
||||
var v = point.affineX.mod(n)
|
||||
|
||||
return v.equals(r)
|
||||
}
|
||||
|
@ -185,7 +185,7 @@ function parseSigCompact(buffer) {
|
|||
*
|
||||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||||
*/
|
||||
function recoverPubKey(ecparams, e, signature, i) {
|
||||
function recoverPubKey(curve, e, signature, i) {
|
||||
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits')
|
||||
|
||||
var r = signature.r
|
||||
|
@ -199,12 +199,11 @@ function recoverPubKey(ecparams, e, signature, i) {
|
|||
// first or second candidate key.
|
||||
var isSecondKey = i >> 1
|
||||
|
||||
var n = ecparams.getN()
|
||||
var G = ecparams.getG()
|
||||
var curve = ecparams.getCurve()
|
||||
var p = curve.getQ()
|
||||
var a = curve.getA().toBigInteger()
|
||||
var b = curve.getB().toBigInteger()
|
||||
var n = curve.params.n
|
||||
var G = curve.params.G
|
||||
var p = curve.p
|
||||
var a = curve.a
|
||||
var b = curve.b
|
||||
|
||||
// We precalculate (p + 1) / 4 where p is the field order
|
||||
if (!curve.P_OVER_FOUR) {
|
||||
|
@ -223,8 +222,8 @@ function recoverPubKey(ecparams, e, signature, i) {
|
|||
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
|
||||
|
||||
// 1.4 Check that nR isn't at infinity
|
||||
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
|
||||
R.validate()
|
||||
var R = Point.fromAffine(curve, x, y)
|
||||
curve.validate(R)
|
||||
|
||||
// 1.5 Compute -e from e
|
||||
var eNeg = e.negate().mod(n)
|
||||
|
@ -234,9 +233,9 @@ function recoverPubKey(ecparams, e, signature, i) {
|
|||
var rInv = r.modInverse(n)
|
||||
|
||||
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
|
||||
Q.validate()
|
||||
curve.validate(Q)
|
||||
|
||||
if (!verifyRaw(ecparams, e, signature, Q)) {
|
||||
if (!verifyRaw(curve, e, signature, Q)) {
|
||||
throw new Error("Pubkey recovery unsuccessful")
|
||||
}
|
||||
|
||||
|
@ -254,9 +253,9 @@ function recoverPubKey(ecparams, e, signature, i) {
|
|||
* This function simply tries all four cases and returns the value
|
||||
* that resulted in a successful pubkey recovery.
|
||||
*/
|
||||
function calcPubKeyRecoveryParam(ecparams, e, signature, Q) {
|
||||
function calcPubKeyRecoveryParam(curve, e, signature, Q) {
|
||||
for (var i = 0; i < 4; i++) {
|
||||
var Qprime = recoverPubKey(ecparams, e, signature, i)
|
||||
var Qprime = recoverPubKey(curve, e, signature, i)
|
||||
|
||||
if (Qprime.equals(Q)) {
|
||||
return i
|
||||
|
|
12
src/eckey.js
12
src/eckey.js
|
@ -7,14 +7,14 @@ var secureRandom = require('secure-random')
|
|||
var BigInteger = require('bigi')
|
||||
var ECPubKey = require('./ecpubkey')
|
||||
|
||||
var sec = require('./sec')
|
||||
var ecparams = sec('secp256k1')
|
||||
var ecurve = require('ecurve')
|
||||
var curve = ecurve.getCurveByName('secp256k1')
|
||||
|
||||
function ECKey(d, compressed) {
|
||||
assert(d.signum() > 0, 'Private key must be greater than 0')
|
||||
assert(d.compareTo(ecparams.getN()) < 0, 'Private key must be less than the curve order')
|
||||
assert(d.compareTo(curve.params.n) < 0, 'Private key must be less than the curve order')
|
||||
|
||||
var Q = ecparams.getG().multiply(d)
|
||||
var Q = curve.params.G.multiply(d)
|
||||
|
||||
this.d = d
|
||||
this.pub = new ECPubKey(Q, compressed)
|
||||
|
@ -47,7 +47,7 @@ ECKey.makeRandom = function(compressed, rng) {
|
|||
|
||||
var buffer = new Buffer(rng(32))
|
||||
var d = BigInteger.fromBuffer(buffer)
|
||||
d = d.mod(ecparams.getN())
|
||||
d = d.mod(curve.params.n)
|
||||
|
||||
return new ECKey(d, compressed)
|
||||
}
|
||||
|
@ -71,7 +71,7 @@ ECKey.prototype.toWIF = function(network) {
|
|||
|
||||
// Operations
|
||||
ECKey.prototype.sign = function(hash) {
|
||||
return ecdsa.sign(ecparams, hash, this.d)
|
||||
return ecdsa.sign(curve, hash, this.d)
|
||||
}
|
||||
|
||||
module.exports = ECKey
|
||||
|
|
|
@ -4,13 +4,12 @@ var ecdsa = require('./ecdsa')
|
|||
var networks = require('./networks')
|
||||
|
||||
var Address = require('./address')
|
||||
var ECPointFp = require('./ec').ECPointFp
|
||||
|
||||
var sec = require('./sec')
|
||||
var ecparams = sec('secp256k1')
|
||||
var ecurve = require('ecurve')
|
||||
var curve = ecurve.getCurveByName('secp256k1')
|
||||
|
||||
function ECPubKey(Q, compressed) {
|
||||
assert(Q instanceof ECPointFp, 'Expected ECPointFP, got ' + Q)
|
||||
assert(Q instanceof ecurve.Point, 'Expected Point, got ' + Q)
|
||||
|
||||
if (compressed == undefined) compressed = true
|
||||
assert.strictEqual(typeof compressed, 'boolean', 'Expected boolean, got ' + compressed)
|
||||
|
@ -21,8 +20,8 @@ function ECPubKey(Q, compressed) {
|
|||
|
||||
// Static constructors
|
||||
ECPubKey.fromBuffer = function(buffer) {
|
||||
var decode = ECPointFp.decodeFrom(ecparams.getCurve(), buffer)
|
||||
return new ECPubKey(decode.Q, decode.compressed)
|
||||
var Q = ecurve.Point.decodeFrom(curve, buffer)
|
||||
return new ECPubKey(Q, Q.compressed)
|
||||
}
|
||||
|
||||
ECPubKey.fromHex = function(hex) {
|
||||
|
@ -37,7 +36,7 @@ ECPubKey.prototype.getAddress = function(network) {
|
|||
}
|
||||
|
||||
ECPubKey.prototype.verify = function(hash, signature) {
|
||||
return ecdsa.verify(ecparams, hash, signature, this.Q)
|
||||
return ecdsa.verify(curve, hash, signature, this.Q)
|
||||
}
|
||||
|
||||
// Export functions
|
||||
|
|
|
@ -1,15 +1,14 @@
|
|||
var assert = require('assert')
|
||||
var base58check = require('./base58check')
|
||||
|
||||
var BigInteger = require('bigi')
|
||||
var crypto = require('./crypto')
|
||||
var ECKey = require('./eckey')
|
||||
var ECPubKey = require('./ecpubkey')
|
||||
var ECPointFp = require('./ec').ECPointFp
|
||||
var networks = require('./networks')
|
||||
|
||||
var sec = require('./sec')
|
||||
var ecparams = sec("secp256k1")
|
||||
var BigInteger = require('bigi')
|
||||
var ECKey = require('./eckey')
|
||||
var ECPubKey = require('./ecpubkey')
|
||||
|
||||
var ecurve = require('ecurve')
|
||||
var curve = ecurve.getCurveByName('secp256k1')
|
||||
|
||||
function findBIP32ParamsByVersion(version) {
|
||||
for (var name in networks) {
|
||||
|
@ -100,20 +99,20 @@ HDNode.fromBuffer = function(buffer) {
|
|||
if (params.isPrivate) {
|
||||
assert.strictEqual(buffer.readUInt8(45), 0x00, 'Invalid private key')
|
||||
var data = buffer.slice(46, 78)
|
||||
var D = BigInteger.fromBuffer(data)
|
||||
hd = new HDNode(D, chainCode, params.network)
|
||||
var d = BigInteger.fromBuffer(data)
|
||||
hd = new HDNode(d, chainCode, params.network)
|
||||
|
||||
// 33 bytes: public key data (0x02 + X or 0x03 + X)
|
||||
} else {
|
||||
var data = buffer.slice(45, 78)
|
||||
var decode = ECPointFp.decodeFrom(ecparams.getCurve(), data)
|
||||
assert.equal(decode.compressed, true, 'Invalid public key')
|
||||
var Q = ecurve.Point.decodeFrom(curve, data)
|
||||
assert.equal(Q.compressed, true, 'Invalid public key')
|
||||
|
||||
// Verify that the X coordinate in the public point corresponds to a point on the curve.
|
||||
// If not, the extended public key is invalid.
|
||||
decode.Q.validate()
|
||||
curve.validate(Q)
|
||||
|
||||
hd = new HDNode(decode.Q, chainCode, params.network)
|
||||
hd = new HDNode(Q, chainCode, params.network)
|
||||
}
|
||||
|
||||
hd.depth = depth
|
||||
|
@ -223,7 +222,7 @@ HDNode.prototype.derive = function(index) {
|
|||
var pIL = BigInteger.fromBuffer(IL)
|
||||
|
||||
// In case parse256(IL) >= n, proceed with the next value for i
|
||||
if (pIL.compareTo(ecparams.getN()) >= 0) {
|
||||
if (pIL.compareTo(curve.params.n) >= 0) {
|
||||
return this.derive(index + 1)
|
||||
}
|
||||
|
||||
|
@ -231,7 +230,7 @@ HDNode.prototype.derive = function(index) {
|
|||
var hd
|
||||
if (this.privKey) {
|
||||
// ki = parse256(IL) + kpar (mod n)
|
||||
var ki = pIL.add(this.privKey.d).mod(ecparams.getN())
|
||||
var ki = pIL.add(this.privKey.d).mod(curve.params.n)
|
||||
|
||||
// In case ki == 0, proceed with the next value for i
|
||||
if (ki.signum() === 0) {
|
||||
|
@ -244,10 +243,10 @@ HDNode.prototype.derive = function(index) {
|
|||
} else {
|
||||
// Ki = point(parse256(IL)) + Kpar
|
||||
// = G*IL + Kpar
|
||||
var Ki = ecparams.getG().multiply(pIL).add(this.pubKey.Q)
|
||||
var Ki = curve.params.G.multiply(pIL).add(this.pubKey.Q)
|
||||
|
||||
// In case Ki is the point at infinity, proceed with the next value for i
|
||||
if (Ki.isInfinity()) {
|
||||
if (curve.isInfinity(Ki)) {
|
||||
return this.derive(index + 1)
|
||||
}
|
||||
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
var ec = require('./ec')
|
||||
var T = require('./transaction')
|
||||
|
||||
module.exports = {
|
||||
|
@ -8,16 +7,13 @@ module.exports = {
|
|||
bufferutils: require('./bufferutils'),
|
||||
convert: require('./convert'),
|
||||
crypto: require('./crypto'),
|
||||
ec: ec,
|
||||
ecdsa: require('./ecdsa'),
|
||||
ECKey: require('./eckey'),
|
||||
ECPointFp: ec.ECPointFp,
|
||||
ECPubKey: require('./ecpubkey'),
|
||||
Message: require('./message'),
|
||||
opcodes: require('./opcodes'),
|
||||
HDNode: require('./hdnode'),
|
||||
Script: require('./script'),
|
||||
sec: require('./sec'),
|
||||
Transaction: T.Transaction,
|
||||
TransactionIn: T.TransactionIn,
|
||||
TransactionOut: T.TransactionOut,
|
||||
|
|
|
@ -9,8 +9,8 @@ var networks = require('./networks')
|
|||
var Address = require('./address')
|
||||
var ECPubKey = require('./ecpubkey')
|
||||
|
||||
var sec = require('./sec')
|
||||
var ecparams = sec('secp256k1')
|
||||
var ecurve = require('ecurve')
|
||||
var ecparams = ecurve.getCurveByName('secp256k1')
|
||||
|
||||
function magicHash(message, network) {
|
||||
var magicPrefix = new Buffer(network.magicPrefix)
|
||||
|
|
84
src/sec.js
84
src/sec.js
|
@ -1,84 +0,0 @@
|
|||
// Named EC curves
|
||||
|
||||
var BigInteger = require('bigi')
|
||||
var ECCurveFp = require('./ec')
|
||||
var ECPointFp = ECCurveFp.ECPointFp
|
||||
|
||||
// ----------------
|
||||
// X9ECParameters
|
||||
|
||||
// constructor
|
||||
function X9ECParameters(curve,g,n,h) {
|
||||
this.curve = curve
|
||||
this.g = g
|
||||
this.n = n
|
||||
this.h = h
|
||||
}
|
||||
|
||||
function x9getCurve() {
|
||||
return this.curve
|
||||
}
|
||||
|
||||
function x9getG() {
|
||||
return this.g
|
||||
}
|
||||
|
||||
function x9getN() {
|
||||
return this.n
|
||||
}
|
||||
|
||||
function x9getH() {
|
||||
return this.h
|
||||
}
|
||||
|
||||
X9ECParameters.prototype.getCurve = x9getCurve
|
||||
X9ECParameters.prototype.getG = x9getG
|
||||
X9ECParameters.prototype.getN = x9getN
|
||||
X9ECParameters.prototype.getH = x9getH
|
||||
|
||||
function secp256r1() {
|
||||
// p = 2^224 (2^32 - 1) + 2^192 + 2^96 - 1
|
||||
var p = BigInteger.fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF")
|
||||
var a = BigInteger.fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC")
|
||||
var b = BigInteger.fromHex("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B")
|
||||
//byte[] S = BigInteger.fromHex("C49D360886E704936A6678E1139D26B7819F7E90")
|
||||
var n = BigInteger.fromHex("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551")
|
||||
var h = BigInteger.ONE
|
||||
var curve = new ECCurveFp(p, a, b)
|
||||
|
||||
var x = BigInteger.fromHex("6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296")
|
||||
var y = BigInteger.fromHex("4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5")
|
||||
var G = new ECPointFp(curve,
|
||||
curve.fromBigInteger(x),
|
||||
curve.fromBigInteger(y))
|
||||
|
||||
return new X9ECParameters(curve, G, n, h)
|
||||
}
|
||||
|
||||
function secp256k1() {
|
||||
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
|
||||
var p = BigInteger.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
|
||||
var a = BigInteger.ZERO
|
||||
var b = BigInteger.fromHex("07")
|
||||
//byte[] S = null
|
||||
var n = BigInteger.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
|
||||
var h = BigInteger.ONE
|
||||
var curve = new ECCurveFp(p, a, b)
|
||||
|
||||
var x = BigInteger.fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
|
||||
var y = BigInteger.fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
|
||||
var G = new ECPointFp(curve,
|
||||
curve.fromBigInteger(x),
|
||||
curve.fromBigInteger(y))
|
||||
|
||||
return new X9ECParameters(curve, G, n, h)
|
||||
}
|
||||
|
||||
function getSECCurveByName(name) {
|
||||
return ({
|
||||
"secp256k1": secp256k1,
|
||||
"secp256r1": secp256r1
|
||||
}[name])()
|
||||
}
|
||||
|
||||
module.exports = getSECCurveByName
|
Loading…
Add table
Add a link
Reference in a new issue