Removed modSqrt. All credit to Joric!

Derp. Well that sure simplifies things, doesn't it... :)
This commit is contained in:
Stefan Thomas 2012-08-17 01:38:29 +02:00
parent 9b2f94a028
commit de6cfd37db

View file

@ -10,118 +10,6 @@ function integerToBytes(i, len) {
return bytes; return bytes;
}; };
/**
* Find a quadratic residue (mod p) of this number. p must be an odd prime.
*
* For a given number a, this function solves the congruence of the form
*
* x^2 = a (mod p)
*
* And returns x. Note that p - x is also a root.
*
* 0 is returned if no square root exists for these a and p.
*
* The Tonelli-Shanks algorithm is used (except for some simple cases
* in which the solution is known from an identity). This algorithm
* runs in polynomial time (unless the generalized Riemann hypothesis
* is false).
*
* Originally implemented in Python by Eli Bendersky:
* http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
*
* Ported to JavaScript by Stefan Thomas.
*/
BigInteger.prototype.modSqrt = function (p) {
var ONE = BigInteger.ONE,
TWO = BigInteger.valueOf(2);
// Simple cases
if (this.legendre(p) != 1) {
return BigInteger.ZERO;
} else if (this.equals(BigInteger.ZERO)) {
return BigInteger.ZERO;
} else if (p.equals(TWO)) {
return p;
} else if (p.mod(BigInteger.valueOf(4)).equals(BigInteger.valueOf(3))) {
return this.modPow(p.add(ONE).divide(BigInteger.valueOf(4)), p);
}
// Partition p-1 to s * 2^e for an odd s (i.e. reduce all the powers
// of 2 from p-1)
var s = p.subtract(ONE);
var e = 0;
while (s.isEven()) {
s = s.divide(TWO);
++e;
}
// Find some 'n' with a legendre symbol n|p = -1.
// Shouldn't take long.
var n = TWO;
while (n.legendre(p) != -1) {
n = n.add(ONE);
}
// Here be dragons!
// Read the paper "Square roots from 1; 24, 51, 10 to Dan Shanks" by
// Ezra Brown for more information
// x is a guess of the square root that gets better with each
// iteration.
//
// b is the "fudge factor" - by how much we're off with the guess.
// The invariant x^2 = ab (mod p) is maintained throughout the loop.
//
// g is used for successive powers of n to update both a and b
//
// r is the exponent - decreases with each update
var x = this.modPow(s.add(ONE).divide(TWO), p);
var b = this.modPow(s, p);
var g = n.modPow(s, p);
var r = e;
for (;;) {
var t = b;
var m;
for (m = 0; m < r; m++) {
if (t.equals(ONE)) break;
t = t.modPowInt(2, p);
}
if (m == 0) {
return x;
}
var gs = g.modPow(TWO.pow(BigInteger.valueOf(r - m - 1)), p);
g = gs.multiply(gs).mod(p);
x = x.multiply(gs).mod(p);
b = b.multiply(g).mod(p);
r = m;
}
};
/**
* Compute the Legendre symbol a|p using Euler's criterion.
*
* p is a prime, a is relatively prime to p
* (if p divides a, then a | p = 0)
*
* Returns 1 if a has a square root modulo p, -1 otherwise.
*/
BigInteger.prototype.legendre = function (p) {
var ls = this.modPow(p.subtract(BigInteger.ONE).shiftRight(1), p);
if (ls.equals(p.subtract(BigInteger.ONE))) {
return -1;
} else if (ls.equals(BigInteger.ZERO)) {
return 0;
} else {
return 1;
}
};
ECFieldElementFp.prototype.getByteLength = function () { ECFieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8); return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
}; };
@ -304,6 +192,8 @@ Bitcoin.ECDSA = (function () {
var ecparams = getSECCurveByName("secp256k1"); var ecparams = getSECCurveByName("secp256k1");
var rng = new SecureRandom(); var rng = new SecureRandom();
var P_OVER_FOUR = null;
function implShamirsTrick(P, k, Q, l) function implShamirsTrick(P, k, Q, l)
{ {
var m = Math.max(k.bitLength(), l.bitLength()); var m = Math.max(k.bitLength(), l.bitLength());
@ -515,12 +405,17 @@ Bitcoin.ECDSA = (function () {
var a = curve.getA().toBigInteger(); var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger(); var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x // 1.1 Compute x
var x = isSecondKey ? r.add(n) : r; var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point // 1.3 Convert x to point
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p); var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
var beta = alpha.modSqrt(p); var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2); var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
// If beta is even, but y isn't or vice versa, then convert it, // If beta is even, but y isn't or vice versa, then convert it,