bitcoinjs-lib/src/ecdsa.js
2014-05-29 15:42:52 +10:00

280 lines
7 KiB
JavaScript

var assert = require('assert')
var crypto = require('./crypto')
var BigInteger = require('bigi')
var ECPointFp = require('./ec').ECPointFp
function deterministicGenerateK(ecparams, hash, D) {
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash)
assert.equal(hash.length, 32, 'Hash must be 256 bit')
assert(D instanceof BigInteger, 'Private key must be a BigInteger')
var x = D.toBuffer(32)
var k = new Buffer(32)
var v = new Buffer(32)
k.fill(0)
v.fill(1)
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
v = crypto.HmacSHA256(v, k)
var n = ecparams.getN()
var kB = BigInteger.fromBuffer(v).mod(n)
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value')
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value')
return kB
}
function sign(ecparams, hash, D) {
var k = deterministicGenerateK(ecparams, hash, D)
var n = ecparams.getN()
var G = ecparams.getG()
var Q = G.multiply(k)
var e = BigInteger.fromBuffer(hash)
var r = Q.getX().toBigInteger().mod(n)
assert.notEqual(r.signum(), 0, 'Invalid R value')
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n)
assert.notEqual(s.signum(), 0, 'Invalid S value')
var N_OVER_TWO = n.shiftRight(1)
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return {r: r, s: s}
}
function verify(ecparams, hash, signature, Q) {
var e = BigInteger.fromBuffer(hash)
return verifyRaw(ecparams, e, signature, Q)
}
function verifyRaw(ecparams, e, signature, Q) {
var n = ecparams.getN()
var G = ecparams.getG()
var r = signature.r
var s = signature.s
if (r.signum() === 0 || r.compareTo(n) >= 0) return false
if (s.signum() === 0 || s.compareTo(n) >= 0) return false
var c = s.modInverse(n)
var u1 = e.multiply(c).mod(n)
var u2 = r.multiply(c).mod(n)
var point = G.multiplyTwo(u1, Q, u2)
var v = point.getX().toBigInteger().mod(n)
return v.equals(r)
}
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
function serializeSig(signature) {
var rBa = signature.r.toDERInteger()
var sBa = signature.s.toDERInteger()
var sequence = []
sequence.push(0x02); // INTEGER
sequence.push(rBa.length)
sequence = sequence.concat(rBa)
sequence.push(0x02); // INTEGER
sequence.push(sBa.length)
sequence = sequence.concat(sBa)
sequence.unshift(sequence.length)
sequence.unshift(0x30); // SEQUENCE
return sequence
}
/**
* Parses a buffer containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
function parseSig(buffer) {
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence')
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length')
assert.equal(buffer.readUInt8(2), 0x02, 'Expected a DER integer')
var rLen = buffer.readUInt8(3)
var rB = buffer.slice(4, 4 + rLen)
var offset = 4 + rLen
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a DER integer (2)')
var sLen = buffer.readUInt8(1 + offset)
var sB = buffer.slice(2 + offset)
offset += 2 + sLen
assert.equal(offset, buffer.length, 'Invalid DER encoding')
return {
r: BigInteger.fromDERInteger(rB),
s: BigInteger.fromDERInteger(sB)
}
}
function serializeSigCompact(signature, i, compressed) {
if (compressed) {
i += 4
}
i += 27
var buffer = new Buffer(65)
buffer.writeUInt8(i, 0)
signature.r.toBuffer(32).copy(buffer, 1)
signature.s.toBuffer(32).copy(buffer, 33)
return buffer
}
function parseSigCompact(buffer) {
assert.equal(buffer.length, 65, 'Invalid signature length')
var i = buffer.readUInt8(0) - 27
// At most 3 bits
assert.equal(i, i & 7, 'Invalid signature parameter')
var compressed = !!(i & 4)
// Recovery param only
i = i & 3
var r = BigInteger.fromBuffer(buffer.slice(1, 33))
var s = BigInteger.fromBuffer(buffer.slice(33))
return {
signature: {
r: r,
s: s
},
i: i,
compressed: compressed
}
}
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey(ecparams, e, signature, i) {
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits')
var r = signature.r
var s = signature.s
// A set LSB signifies that the y-coordinate is odd
// By reduction, the y-coordinate is even if it is clear
var isYEven = !(i & 1)
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
var n = ecparams.getN()
var G = ecparams.getG()
var curve = ecparams.getCurve()
var p = curve.getQ()
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r
// 1.3 Convert x to point
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
// If beta is even, but y isn't, or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
// 1.4 Check that nR isn't at infinity
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
R.validate()
// 1.5 Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var rInv = r.modInverse(n)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
Q.validate()
if (!verifyRaw(ecparams, e, signature, Q)) {
throw new Error("Pubkey recovery unsuccessful")
}
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam(ecparams, e, signature, Q) {
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(ecparams, e, signature, i)
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
verifyRaw: verifyRaw,
serializeSig: serializeSig,
parseSig: parseSig,
serializeSigCompact: serializeSigCompact,
parseSigCompact: parseSigCompact
}