bitcoinjs-lib/src/ecdsa.js
2015-06-23 16:11:34 +10:00

245 lines
5.8 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

var assert = require('assert')
var createHmac = require('create-hmac')
var typeForce = require('typeforce')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
// https://tools.ietf.org/html/rfc6979#section-3.2
function deterministicGenerateK (curve, hash, d, checkSig) {
typeForce('Buffer', hash)
typeForce('BigInteger', d)
typeForce('Function', checkSig)
// sanity check
assert.equal(hash.length, 32, 'Hash must be 256 bit')
var x = d.toBuffer(32)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while ((T.signum() <= 0) || (T.compareTo(curve.n) >= 0) || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
function sign (curve, hash, d) {
typeForce('Curve', curve)
typeForce('Buffer', hash)
typeForce('BigInteger', d)
var e = BigInteger.fromBuffer(hash)
var n = curve.n
var G = curve.G
var r, s
deterministicGenerateK(curve, hash, d, function (k) {
var Q = G.multiply(k)
if (curve.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
var N_OVER_TWO = n.shiftRight(1)
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (curve, hash, signature, Q) {
typeForce('Curve', curve)
typeForce('Buffer', hash)
typeForce('ECSignature', signature)
typeForce('Point', Q)
var n = curve.n
var G = curve.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^1 mod n
// u2 = rs^1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (curve.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
}
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey (curve, e, signature, i) {
typeForce('Curve', curve)
typeForce('BigInteger', e)
typeForce('ECSignature', signature)
typeForce('Number', i)
assert.strictEqual(i & 3, i, 'Recovery param is more than two bits')
var n = curve.n
var G = curve.G
var r = signature.r
var s = signature.s
assert(r.signum() > 0 && r.compareTo(n) < 0, 'Invalid r value')
assert(s.signum() > 0 && s.compareTo(n) < 0, 'Invalid s value')
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r
var R = curve.pointFromX(isYOdd, x)
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
assert(curve.isInfinity(nR), 'nR is not a valid curve point')
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
curve.validate(Q)
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam (curve, e, signature, Q) {
typeForce('Curve', curve)
typeForce('BigInteger', e)
typeForce('ECSignature', signature)
typeForce('Point', Q)
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(curve, e, signature, i)
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify
}