204 lines
6.6 KiB
JavaScript
204 lines
6.6 KiB
JavaScript
/* global describe, it */
|
|
|
|
var assert = require('assert')
|
|
var async = require('async')
|
|
var bigi = require('bigi')
|
|
var bitcoin = require('../../')
|
|
var blockchain = require('./_blockchain')
|
|
var crypto = require('crypto')
|
|
|
|
var ecurve = require('ecurve')
|
|
var secp256k1 = ecurve.getCurveByName('secp256k1')
|
|
|
|
describe('bitcoinjs-lib (crypto)', function () {
|
|
it('can generate a single-key stealth address', function () {
|
|
var G = secp256k1.G
|
|
var n = secp256k1.n
|
|
|
|
function stealthSend (Q) {
|
|
var noncePair = bitcoin.ECPair.makeRandom()
|
|
var e = noncePair.d
|
|
var eQ = Q.multiply(e) // shared secret
|
|
var c = bigi.fromBuffer(bitcoin.crypto.sha256(eQ.getEncoded()))
|
|
var cG = G.multiply(c)
|
|
var Qprime = Q.add(cG)
|
|
|
|
return {
|
|
address: new bitcoin.ECPair(null, Qprime).getAddress(),
|
|
nonceQ: noncePair.Q
|
|
}
|
|
}
|
|
|
|
function stealthReceive (d, P) {
|
|
var dP = P.multiply(d) // shared secret
|
|
var c = bigi.fromBuffer(bitcoin.crypto.sha256(dP.getEncoded()))
|
|
var derived = new bitcoin.ECPair(d.add(c).mod(n))
|
|
|
|
return {
|
|
keyPair: derived
|
|
}
|
|
}
|
|
|
|
// receiver private key
|
|
var receiver = bitcoin.ECPair.fromWIF('5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss')
|
|
|
|
var stealthS = stealthSend(receiver.Q) // public, done by sender
|
|
// ... sender now reveals nonceQ to receiver
|
|
|
|
var stealthR = stealthReceive(receiver.d, stealthS.nonceQ) // private, done by receiver
|
|
|
|
// and check that we derived both sides correctly
|
|
assert.equal(stealthS.address, stealthR.keyPair.getAddress())
|
|
})
|
|
|
|
// TODO
|
|
it.skip('can generate a dual-key stealth address', function () {})
|
|
|
|
it("can recover a parent private key from the parent's public key and a derived non-hardened child private key", function () {
|
|
function recoverParent (master, child) {
|
|
assert(!master.keyPair.d, 'You already have the parent private key')
|
|
assert(child.keyPair.d, 'Missing child private key')
|
|
|
|
var curve = secp256k1
|
|
var QP = master.keyPair.Q
|
|
var serQP = master.keyPair.getPublicKeyBuffer()
|
|
|
|
var d1 = child.keyPair.d
|
|
var d2
|
|
var indexBuffer = new Buffer(4)
|
|
|
|
// search index space until we find it
|
|
for (var i = 0; i < bitcoin.HDNode.HIGHEST_BIT; ++i) {
|
|
indexBuffer.writeUInt32BE(i, 0)
|
|
|
|
// calculate I
|
|
var data = Buffer.concat([serQP, indexBuffer])
|
|
var I = crypto.createHmac('sha512', master.chainCode).update(data).digest()
|
|
var IL = I.slice(0, 32)
|
|
var pIL = bigi.fromBuffer(IL)
|
|
|
|
// See hdnode.js:273 to understand
|
|
d2 = d1.subtract(pIL).mod(curve.n)
|
|
|
|
var Qp = new bitcoin.ECPair(d2).Q
|
|
if (Qp.equals(QP)) break
|
|
}
|
|
|
|
var node = new bitcoin.HDNode(new bitcoin.ECPair(d2), master.chainCode, master.network)
|
|
node.depth = master.depth
|
|
node.index = master.index
|
|
node.masterFingerprint = master.masterFingerprint
|
|
return node
|
|
}
|
|
|
|
var seed = crypto.randomBytes(32)
|
|
var master = bitcoin.HDNode.fromSeedBuffer(seed)
|
|
var child = master.derive(6) // m/6
|
|
|
|
// now for the recovery
|
|
var neuteredMaster = master.neutered()
|
|
var recovered = recoverParent(neuteredMaster, child)
|
|
assert.strictEqual(recovered.toBase58(), master.toBase58())
|
|
})
|
|
|
|
it('can recover a private key from duplicate R values', function (done) {
|
|
this.timeout(10000)
|
|
|
|
var inputs = [
|
|
{
|
|
txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50',
|
|
vout: 0
|
|
},
|
|
{
|
|
txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50',
|
|
vout: 1
|
|
}
|
|
]
|
|
|
|
var txIds = inputs.map(function (x) { return x.txId })
|
|
|
|
// first retrieve the relevant transactions
|
|
blockchain.m.transactions.get(txIds, function (err, results) {
|
|
assert.ifError(err)
|
|
|
|
var transactions = {}
|
|
results.forEach(function (tx) {
|
|
transactions[tx.txId] = bitcoin.Transaction.fromHex(tx.txHex)
|
|
})
|
|
|
|
var tasks = []
|
|
|
|
// now we need to collect/transform a bit of data from the selected inputs
|
|
inputs.forEach(function (input) {
|
|
var transaction = transactions[input.txId]
|
|
var script = transaction.ins[input.vout].script
|
|
var scriptChunks = bitcoin.scripts.decompile(script)
|
|
|
|
assert(bitcoin.scripts.isPubKeyHashInput(scriptChunks), 'Expected pubKeyHash script')
|
|
|
|
var prevOutTxId = bitcoin.bufferutils.reverse(transaction.ins[input.vout].hash).toString('hex')
|
|
var prevVout = transaction.ins[input.vout].index
|
|
|
|
tasks.push(function (callback) {
|
|
blockchain.m.transactions.get(prevOutTxId, function (err, result) {
|
|
if (err) return callback(err)
|
|
|
|
var prevOut = bitcoin.Transaction.fromHex(result.txHex)
|
|
var prevOutScript = prevOut.outs[prevVout].script
|
|
|
|
var scriptSignature = bitcoin.ECSignature.parseScriptSignature(scriptChunks[0])
|
|
var publicKey = bitcoin.ECPair.fromPublicKeyBuffer(scriptChunks[1])
|
|
|
|
var m = transaction.hashForSignature(input.vout, prevOutScript, scriptSignature.hashType)
|
|
assert(publicKey.verify(m, scriptSignature.signature), 'Invalid m')
|
|
|
|
// store the required information
|
|
input.signature = scriptSignature.signature
|
|
input.z = bigi.fromBuffer(m)
|
|
|
|
return callback()
|
|
})
|
|
})
|
|
})
|
|
|
|
// finally, run the tasks, then on to the math
|
|
async.parallel(tasks, function (err) {
|
|
if (err) throw err
|
|
|
|
var n = secp256k1.n
|
|
|
|
for (var i = 0; i < inputs.length; ++i) {
|
|
for (var j = i + 1; j < inputs.length; ++j) {
|
|
var inputA = inputs[i]
|
|
var inputB = inputs[j]
|
|
|
|
// enforce matching r values
|
|
assert.strictEqual(inputA.signature.r.toString(), inputB.signature.r.toString())
|
|
var r = inputA.signature.r
|
|
var rInv = r.modInverse(n)
|
|
|
|
var s1 = inputA.signature.s
|
|
var s2 = inputB.signature.s
|
|
var z1 = inputA.z
|
|
var z2 = inputB.z
|
|
|
|
var zz = z1.subtract(z2).mod(n)
|
|
var ss = s1.subtract(s2).mod(n)
|
|
|
|
// k = (z1 - z2) / (s1 - s2)
|
|
// d1 = (s1 * k - z1) / r
|
|
// d2 = (s2 * k - z2) / r
|
|
var k = zz.multiply(ss.modInverse(n)).mod(n)
|
|
var d1 = ((s1.multiply(k).mod(n)).subtract(z1).mod(n)).multiply(rInv).mod(n)
|
|
var d2 = ((s2.multiply(k).mod(n)).subtract(z2).mod(n)).multiply(rInv).mod(n)
|
|
|
|
// enforce matching private keys
|
|
assert.strictEqual(d1.toString(), d2.toString())
|
|
}
|
|
}
|
|
|
|
done()
|
|
})
|
|
})
|
|
})
|
|
})
|