Mangle scrypt some more

3.62kH/s/core on a 3.6GHz PhenomII compiled with gcc 4.6.1 and CFLAGS="-march=amdfam10 -O3"
This commit is contained in:
Art Forz 2011-10-06 03:34:47 +02:00
parent 383482e0a6
commit a8a1f3f8d4

443
scrypt.c
View file

@ -34,63 +34,24 @@
#include <stdint.h>
#include <string.h>
static inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
uint32_t buf[16];
} SHA256_CTX;
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static inline void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
{
size_t i;
uint32_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static inline void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
for (i = 0; i < len; i++)
dst[i] = byteswap(src[i]);
}
/* Elementary functions used by SHA256 */
@ -123,7 +84,7 @@ be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap)
{
uint32_t W[64];
uint32_t S[8];
@ -131,9 +92,15 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64])
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
if(swap)
for (i = 0; i < 16; i++)
W[i] = byteswap(block[i]);
else
memcpy(W, block, 64);
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 32);
@ -209,111 +176,22 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64])
state[i] += S[i];
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* SHA-256 initialization. Begins a SHA-256 operation. */
static inline void
SHA256_Init(SHA256_CTX * ctx)
SHA256_InitState(uint32_t * state)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
state[0] = 0x6A09E667;
state[1] = 0xBB67AE85;
state[2] = 0x3C6EF372;
state[3] = 0xA54FF53A;
state[4] = 0x510E527F;
state[5] = 0x9B05688C;
state[6] = 0x1F83D9AB;
state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
static inline void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/* Add padding and terminating bit-count. */
static inline void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update(ctx, len, 8);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
static inline void
SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
}
static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000};
static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300};
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
@ -321,149 +199,132 @@ SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
static inline void
PBKDF2_SHA256_80_128(const uint8_t * passwd, uint8_t * buf)
PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
unsigned char ihash[32];
/* Compute HMAC state after processing P and S. */
unsigned char pad[64];
unsigned char khash[32];
SHA256_CTX PShictx, PShoctx;
uint32_t tstate[8];
uint32_t ihash[8];
uint32_t i;
uint32_t pad[16];
static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000};
/* If Klen > 64, the key is really SHA256(K). */
SHA256_Init(&PShctx.ictx);
SHA256_Update(&PShctx.ictx, passwd, 80);
SHA256_Final(khash, &PShctx.ictx);
SHA256_InitState(tstate);
SHA256_Transform(tstate, passwd, 1);
memcpy(pad, passwd+16, 16);
memcpy(pad+4, passwdpad, 48);
SHA256_Transform(tstate, pad, 1);
memcpy(ihash, tstate, 32);
SHA256_Init(&PShctx.ictx);
memset(pad, 0x36, 64);
for (i = 0; i < 32; i++)
pad[i] ^= khash[i];
SHA256_Update(&PShctx.ictx, pad, 64);
SHA256_InitState(PShictx.state);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x36363636;
for (; i < 16; i++)
pad[i] = 0x36363636;
SHA256_Transform(PShictx.state, pad, 0);
SHA256_Transform(PShictx.state, passwd, 1);
be32enc_vect(PShictx.buf, passwd+16, 4);
be32enc_vect(PShictx.buf+5, innerpad, 11);
SHA256_Init(&PShctx.octx);
memset(pad, 0x5c, 64);
for (i = 0; i < 32; i++)
pad[i] ^= khash[i];
SHA256_Update(&PShctx.octx, pad, 64);
SHA256_Update(&PShctx.ictx, passwd, 80);
SHA256_InitState(PShoctx.state);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x5c5c5c5c;
for (; i < 16; i++)
pad[i] = 0x5c5c5c5c;
SHA256_Transform(PShoctx.state, pad, 0);
memcpy(PShoctx.buf+8, outerpad, 32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < 128; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
for (i = 0; i < 4; i++) {
uint32_t istate[8];
uint32_t ostate[8];
memcpy(istate, PShictx.state, 32);
PShictx.buf[4] = i + 1;
SHA256_Transform(istate, PShictx.buf, 0);
memcpy(PShoctx.buf, istate, 32);
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
SHA256_Update(&hctx.ictx, ivec, 4);
SHA256_Final(ihash, &hctx.ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&hctx.octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(&buf[i*32], &hctx.octx);
memcpy(ostate, PShoctx.state, 32);
SHA256_Transform(ostate, PShoctx.buf, 0);
be32enc_vect(buf+i*8, ostate, 8);
}
}
static inline void
PBKDF2_SHA256_80_128_32(const uint8_t * passwd, const uint8_t * salt, uint8_t * buf)
static inline uint32_t
PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt)
{
HMAC_SHA256_CTX PShctx;
size_t i;
uint8_t ivec[4];
unsigned char ihash[32];
uint32_t tstate[8];
uint32_t ostate[8];
uint32_t ihash[8];
uint32_t i;
/* Compute HMAC state after processing P and S. */
unsigned char pad[64];
unsigned char khash[32];
uint32_t pad[16];
static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620};
/* If Klen > 64, the key is really SHA256(K). */
SHA256_Init(&PShctx.ictx);
SHA256_Update(&PShctx.ictx, passwd, 80);
SHA256_Final(khash, &PShctx.ictx);
SHA256_InitState(tstate);
SHA256_Transform(tstate, passwd, 1);
memcpy(pad, passwd+16, 16);
memcpy(pad+4, passwdpad, 48);
SHA256_Transform(tstate, pad, 1);
memcpy(ihash, tstate, 32);
SHA256_Init(&PShctx.ictx);
memset(pad, 0x36, 64);
for (i = 0; i < 32; i++)
pad[i] ^= khash[i];
SHA256_Update(&PShctx.ictx, pad, 64);
SHA256_InitState(ostate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x5c5c5c5c;
for (; i < 16; i++)
pad[i] = 0x5c5c5c5c;
SHA256_Transform(ostate, pad, 0);
SHA256_Init(&PShctx.octx);
memset(pad, 0x5c, 64);
for (i = 0; i < 32; i++)
pad[i] ^= khash[i];
SHA256_Update(&PShctx.octx, pad, 64);
SHA256_InitState(tstate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x36363636;
for (; i < 16; i++)
pad[i] = 0x36363636;
SHA256_Transform(tstate, pad, 0);
SHA256_Transform(tstate, salt, 1);
SHA256_Transform(tstate, salt+16, 1);
SHA256_Transform(tstate, ihash_finalblk, 0);
memcpy(pad, tstate, 32);
memcpy(pad+8, outerpad, 32);
SHA256_Update(&PShctx.ictx, salt, 128);
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(1));
/* Compute U_1 = PRF(P, S || INT(i)). */
SHA256_Update(&PShctx.ictx, ivec, 4);
SHA256_Final(ihash, &PShctx.ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&PShctx.octx, ihash, 32);
SHA256_Transform(ostate, pad, 0);
/* Finish the outer SHA256 operation. */
SHA256_Final(&buf[0], &PShctx.octx);
return byteswap(ostate[7]);
}
static inline void
blkcpy(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static inline void
blkxor(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] ^= S[i];
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static inline void
salsa20_8(uint32_t B[16])
salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
size_t i;
x00 = B[ 0];
x01 = B[ 1];
x02 = B[ 2];
x03 = B[ 3];
x04 = B[ 4];
x05 = B[ 5];
x06 = B[ 6];
x07 = B[ 7];
x08 = B[ 8];
x09 = B[ 9];
x10 = B[10];
x11 = B[11];
x12 = B[12];
x13 = B[13];
x14 = B[14];
x15 = B[15];
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
@ -500,77 +361,73 @@ salsa20_8(uint32_t B[16])
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad)
{
uint32_t * V;
uint32_t * X;
uint32_t X[32];
uint32_t i;
uint32_t j;
uint32_t k;
uint64_t *p1, *p2;
X = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
V = &X[32];
p1 = (uint64_t *)X;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256_80_128((const uint8_t*)input, (uint8_t *)X);
PBKDF2_SHA256_80_128(input, X);
for (i = 0; i < 1024; i += 2) {
blkcpy(&V[i * 32], X, 128);
memcpy(&V[i * 32], X, 128);
blkxor(&X[0], &X[16], 64);
salsa20_8(&X[0]);
blkxor(&X[16], &X[0], 64);
salsa20_8(&X[16]);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
blkcpy(&V[(i + 1) * 32], X, 128);
memcpy(&V[(i + 1) * 32], X, 128);
blkxor(&X[0], &X[16], 64);
salsa20_8(&X[0]);
blkxor(&X[16], &X[0], 64);
salsa20_8(&X[16]);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
}
for (i = 0; i < 1024; i += 2) {
j = X[16] & 1023;
blkxor(X, &V[j * 32], 128);
p2 = (uint64_t *)(&V[j * 32]);
for(k = 0; k < 16; k++)
p1[k] ^= p2[k];
blkxor(&X[0], &X[16], 64);
salsa20_8(&X[0]);
blkxor(&X[16], &X[0], 64);
salsa20_8(&X[16]);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
j = X[16] & 1023;
blkxor(X, &V[j * 32], 128);
p2 = (uint64_t *)(&V[j * 32]);
for(k = 0; k < 16; k++)
p1[k] ^= p2[k];
blkxor(&X[0], &X[16], 64);
salsa20_8(&X[0]);
blkxor(&X[16], &X[0], 64);
salsa20_8(&X[16]);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
}
PBKDF2_SHA256_80_128_32((const uint8_t*)input, (const uint8_t *)X, (uint8_t*)output);
return PBKDF2_SHA256_80_128_32(input, X);
}
int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
unsigned char data[80];
unsigned char tmp_hash[32];
uint32_t *nonce = (uint32_t *)(data + 64 + 12);
uint32_t data[20];
uint32_t tmp_hash7;
uint32_t n = 0;
uint32_t Htarg = *(uint32_t *)(ptarget + 28);
uint32_t Htarg = ((const uint32_t *)ptarget)[7];
int i;
work_restart[thr_id].restart = 0;
for (i = 0; i < 80/4; i++)
((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]);
be32enc_vect(data, (const uint32_t *)pdata, 19);
while(1) {
n++;
*nonce = n;
scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf);
data[19] = n;
tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf);
if (*(uint32_t *)(tmp_hash+28) <= Htarg) {
*(uint32_t *)(pdata + 64 + 12) = swab32(n);
if (tmp_hash7 <= Htarg) {
((uint32_t *)pdata)[19] = byteswap(n);
*hashes_done = n;
return true;
}