700 lines
20 KiB
C
700 lines
20 KiB
C
/*-
|
|
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2012 pooler
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file was originally written by Colin Percival as part of the Tarsnap
|
|
* online backup system.
|
|
*/
|
|
|
|
#include "cpuminer-config.h"
|
|
#include "miner.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) \
|
|
| (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
|
|
|
|
static inline void byteswap_vec(uint32_t *dest, const uint32_t *src, int len)
|
|
{
|
|
int i;
|
|
for (i = 0; i < len; i++)
|
|
dest[i] = byteswap(src[i]);
|
|
}
|
|
|
|
|
|
static inline void SHA256_InitState(uint32_t *state)
|
|
{
|
|
/* Magic initialization constants */
|
|
state[0] = 0x6A09E667;
|
|
state[1] = 0xBB67AE85;
|
|
state[2] = 0x3C6EF372;
|
|
state[3] = 0xA54FF53A;
|
|
state[4] = 0x510E527F;
|
|
state[5] = 0x9B05688C;
|
|
state[6] = 0x1F83D9AB;
|
|
state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define SHR(x, n) (x >> n)
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
|
t1 = S0(a) + Maj(a, b, c); \
|
|
d += t0; \
|
|
h = t0 + t1;
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i, k) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i] + k)
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void SHA256_Transform(uint32_t *state, const uint32_t *block, int swap)
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
uint32_t t0, t1;
|
|
int i;
|
|
|
|
/* 1. Prepare message schedule W. */
|
|
if (swap)
|
|
byteswap_vec(W, block, 16);
|
|
else
|
|
memcpy(W, block, 64);
|
|
for (i = 16; i < 64; i += 2) {
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
|
|
}
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
RNDr(S, W, 0, 0x428a2f98);
|
|
RNDr(S, W, 1, 0x71374491);
|
|
RNDr(S, W, 2, 0xb5c0fbcf);
|
|
RNDr(S, W, 3, 0xe9b5dba5);
|
|
RNDr(S, W, 4, 0x3956c25b);
|
|
RNDr(S, W, 5, 0x59f111f1);
|
|
RNDr(S, W, 6, 0x923f82a4);
|
|
RNDr(S, W, 7, 0xab1c5ed5);
|
|
RNDr(S, W, 8, 0xd807aa98);
|
|
RNDr(S, W, 9, 0x12835b01);
|
|
RNDr(S, W, 10, 0x243185be);
|
|
RNDr(S, W, 11, 0x550c7dc3);
|
|
RNDr(S, W, 12, 0x72be5d74);
|
|
RNDr(S, W, 13, 0x80deb1fe);
|
|
RNDr(S, W, 14, 0x9bdc06a7);
|
|
RNDr(S, W, 15, 0xc19bf174);
|
|
RNDr(S, W, 16, 0xe49b69c1);
|
|
RNDr(S, W, 17, 0xefbe4786);
|
|
RNDr(S, W, 18, 0x0fc19dc6);
|
|
RNDr(S, W, 19, 0x240ca1cc);
|
|
RNDr(S, W, 20, 0x2de92c6f);
|
|
RNDr(S, W, 21, 0x4a7484aa);
|
|
RNDr(S, W, 22, 0x5cb0a9dc);
|
|
RNDr(S, W, 23, 0x76f988da);
|
|
RNDr(S, W, 24, 0x983e5152);
|
|
RNDr(S, W, 25, 0xa831c66d);
|
|
RNDr(S, W, 26, 0xb00327c8);
|
|
RNDr(S, W, 27, 0xbf597fc7);
|
|
RNDr(S, W, 28, 0xc6e00bf3);
|
|
RNDr(S, W, 29, 0xd5a79147);
|
|
RNDr(S, W, 30, 0x06ca6351);
|
|
RNDr(S, W, 31, 0x14292967);
|
|
RNDr(S, W, 32, 0x27b70a85);
|
|
RNDr(S, W, 33, 0x2e1b2138);
|
|
RNDr(S, W, 34, 0x4d2c6dfc);
|
|
RNDr(S, W, 35, 0x53380d13);
|
|
RNDr(S, W, 36, 0x650a7354);
|
|
RNDr(S, W, 37, 0x766a0abb);
|
|
RNDr(S, W, 38, 0x81c2c92e);
|
|
RNDr(S, W, 39, 0x92722c85);
|
|
RNDr(S, W, 40, 0xa2bfe8a1);
|
|
RNDr(S, W, 41, 0xa81a664b);
|
|
RNDr(S, W, 42, 0xc24b8b70);
|
|
RNDr(S, W, 43, 0xc76c51a3);
|
|
RNDr(S, W, 44, 0xd192e819);
|
|
RNDr(S, W, 45, 0xd6990624);
|
|
RNDr(S, W, 46, 0xf40e3585);
|
|
RNDr(S, W, 47, 0x106aa070);
|
|
RNDr(S, W, 48, 0x19a4c116);
|
|
RNDr(S, W, 49, 0x1e376c08);
|
|
RNDr(S, W, 50, 0x2748774c);
|
|
RNDr(S, W, 51, 0x34b0bcb5);
|
|
RNDr(S, W, 52, 0x391c0cb3);
|
|
RNDr(S, W, 53, 0x4ed8aa4a);
|
|
RNDr(S, W, 54, 0x5b9cca4f);
|
|
RNDr(S, W, 55, 0x682e6ff3);
|
|
RNDr(S, W, 56, 0x748f82ee);
|
|
RNDr(S, W, 57, 0x78a5636f);
|
|
RNDr(S, W, 58, 0x84c87814);
|
|
RNDr(S, W, 59, 0x8cc70208);
|
|
RNDr(S, W, 60, 0x90befffa);
|
|
RNDr(S, W, 61, 0xa4506ceb);
|
|
RNDr(S, W, 62, 0xbef9a3f7);
|
|
RNDr(S, W, 63, 0xc67178f2);
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
#if defined(__x86_64__)
|
|
#define SHA256_4WAY
|
|
void SHA256_Transform_4way(uint32_t *state, const uint32_t *block, int swap);
|
|
void SHA256_InitState_4way(uint32_t *state);
|
|
#endif
|
|
|
|
|
|
static const uint32_t keypad[12] = {
|
|
0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000
|
|
};
|
|
static const uint32_t innerpad[11] = {
|
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0
|
|
};
|
|
static const uint32_t outerpad[8] = {
|
|
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300
|
|
};
|
|
static const uint32_t finalblk[16] = {
|
|
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620
|
|
};
|
|
|
|
static inline void HMAC_SHA256_80_init(const uint32_t *key,
|
|
uint32_t *tstate, uint32_t *ostate)
|
|
{
|
|
uint32_t ihash[8];
|
|
uint32_t pad[16];
|
|
int i;
|
|
|
|
SHA256_InitState(tstate);
|
|
SHA256_Transform(tstate, key, 1);
|
|
memcpy(pad, key + 16, 16);
|
|
memcpy(pad + 4, keypad, 48);
|
|
SHA256_Transform(tstate, pad, 1);
|
|
memcpy(ihash, tstate, 32);
|
|
|
|
SHA256_InitState(ostate);
|
|
for (i = 0; i < 8; i++)
|
|
pad[i] = ihash[i] ^ 0x5c5c5c5c;
|
|
for (; i < 16; i++)
|
|
pad[i] = 0x5c5c5c5c;
|
|
SHA256_Transform(ostate, pad, 0);
|
|
|
|
SHA256_InitState(tstate);
|
|
for (i = 0; i < 8; i++)
|
|
pad[i] = ihash[i] ^ 0x36363636;
|
|
for (; i < 16; i++)
|
|
pad[i] = 0x36363636;
|
|
SHA256_Transform(tstate, pad, 0);
|
|
}
|
|
|
|
static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate,
|
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output)
|
|
{
|
|
uint32_t istate[8], ostate2[8];
|
|
uint32_t ibuf[16], obuf[16];
|
|
int i;
|
|
|
|
memcpy(istate, tstate, 32);
|
|
SHA256_Transform(istate, salt, 1);
|
|
|
|
byteswap_vec(ibuf, salt + 16, 4);
|
|
memcpy(ibuf + 5, innerpad, 44);
|
|
memcpy(obuf + 8, outerpad, 32);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
memcpy(obuf, istate, 32);
|
|
ibuf[4] = i + 1;
|
|
SHA256_Transform(obuf, ibuf, 0);
|
|
|
|
memcpy(ostate2, ostate, 32);
|
|
SHA256_Transform(ostate2, obuf, 0);
|
|
byteswap_vec(output + 8 * i, ostate2, 8);
|
|
}
|
|
}
|
|
|
|
static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate,
|
|
const uint32_t *salt, uint32_t *output)
|
|
{
|
|
uint32_t buf[16];
|
|
|
|
SHA256_Transform(tstate, salt, 1);
|
|
SHA256_Transform(tstate, salt + 16, 1);
|
|
SHA256_Transform(tstate, finalblk, 0);
|
|
memcpy(buf, tstate, 32);
|
|
memcpy(buf + 8, outerpad, 32);
|
|
|
|
SHA256_Transform(ostate, buf, 0);
|
|
byteswap_vec(output, ostate, 8);
|
|
}
|
|
|
|
|
|
#ifdef SHA256_4WAY
|
|
|
|
static const uint32_t keypad_4way[4 * 12] = {
|
|
0x00000080, 0x00000080, 0x00000080, 0x00000080,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x80020000, 0x80020000, 0x80020000, 0x80020000
|
|
};
|
|
static const uint32_t innerpad_4way[4 * 11] = {
|
|
0x80000000, 0x80000000, 0x80000000, 0x80000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x000004a0, 0x000004a0, 0x000004a0, 0x000004a0
|
|
};
|
|
static const uint32_t outerpad_4way[4 * 8] = {
|
|
0x80000000, 0x80000000, 0x80000000, 0x80000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000300, 0x00000300, 0x00000300, 0x00000300
|
|
};
|
|
static const uint32_t finalblk_4way[4 * 16] = {
|
|
0x00000001, 0x00000001, 0x00000001, 0x00000001,
|
|
0x80000000, 0x80000000, 0x80000000, 0x80000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000620, 0x00000620, 0x00000620, 0x00000620
|
|
};
|
|
|
|
static inline void HMAC_SHA256_80_init_4way(const uint32_t *key,
|
|
uint32_t *tstate, uint32_t *ostate)
|
|
{
|
|
uint32_t ihash[4 * 8];
|
|
uint32_t pad[4 * 16];
|
|
int i;
|
|
|
|
SHA256_InitState_4way(tstate);
|
|
SHA256_Transform_4way(tstate, key, 1);
|
|
memcpy(pad, key + 4 * 16, 4 * 16);
|
|
memcpy(pad + 4 * 4, keypad_4way, 4 * 48);
|
|
SHA256_Transform_4way(tstate, pad, 1);
|
|
memcpy(ihash, tstate, 4 * 32);
|
|
|
|
SHA256_InitState_4way(ostate);
|
|
for (i = 0; i < 4 * 8; i++)
|
|
pad[i] = ihash[i] ^ 0x5c5c5c5c;
|
|
for (; i < 4 * 16; i++)
|
|
pad[i] = 0x5c5c5c5c;
|
|
SHA256_Transform_4way(ostate, pad, 0);
|
|
|
|
SHA256_InitState_4way(tstate);
|
|
for (i = 0; i < 4 * 8; i++)
|
|
pad[i] = ihash[i] ^ 0x36363636;
|
|
for (; i < 4 * 16; i++)
|
|
pad[i] = 0x36363636;
|
|
SHA256_Transform_4way(tstate, pad, 0);
|
|
}
|
|
|
|
static inline void PBKDF2_SHA256_80_128_4way(const uint32_t *tstate,
|
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output)
|
|
{
|
|
uint32_t istate[4 * 8], ostate2[4 * 8];
|
|
uint32_t ibuf[4 * 16], obuf[4 * 16];
|
|
int i;
|
|
|
|
memcpy(istate, tstate, 4 * 32);
|
|
SHA256_Transform_4way(istate, salt, 1);
|
|
|
|
byteswap_vec(ibuf, salt + 4 * 16, 4 * 4);
|
|
memcpy(ibuf + 4 * 5, innerpad_4way, 4 * 44);
|
|
memcpy(obuf + 4 * 8, outerpad_4way, 4 * 32);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
memcpy(obuf, istate, 4 * 32);
|
|
ibuf[4 * 4 + 0] = i + 1;
|
|
ibuf[4 * 4 + 1] = i + 1;
|
|
ibuf[4 * 4 + 2] = i + 1;
|
|
ibuf[4 * 4 + 3] = i + 1;
|
|
SHA256_Transform_4way(obuf, ibuf, 0);
|
|
|
|
memcpy(ostate2, ostate, 4 * 32);
|
|
SHA256_Transform_4way(ostate2, obuf, 0);
|
|
byteswap_vec(output + 4 * 8 * i, ostate2, 4 * 8);
|
|
}
|
|
}
|
|
|
|
static inline void PBKDF2_SHA256_128_32_4way(uint32_t *tstate,
|
|
uint32_t *ostate, const uint32_t *salt, uint32_t *output)
|
|
{
|
|
uint32_t buf[4 * 16];
|
|
|
|
SHA256_Transform_4way(tstate, salt, 1);
|
|
SHA256_Transform_4way(tstate, salt + 4 * 16, 1);
|
|
SHA256_Transform_4way(tstate, finalblk_4way, 0);
|
|
memcpy(buf, tstate, 4 * 32);
|
|
memcpy(buf + 4 * 8, outerpad_4way, 4 * 32);
|
|
|
|
SHA256_Transform_4way(ostate, buf, 0);
|
|
byteswap_vec(output, ostate, 4 * 8);
|
|
}
|
|
|
|
#endif /* SHA256_4WAY */
|
|
|
|
|
|
#if defined(__x86_64__)
|
|
|
|
#define SCRYPT_3WAY
|
|
#define SCRYPT_BUFFER_SIZE (3 * 131072 + 63)
|
|
|
|
int scrypt_best_throughput();
|
|
void scrypt_core(uint32_t *X, uint32_t *V);
|
|
void scrypt_core_2way(uint32_t *X, uint32_t *Y, uint32_t *V);
|
|
void scrypt_core_3way(uint32_t *X, uint32_t *Y, uint32_t *Z, uint32_t *V);
|
|
|
|
#elif defined(__i386__)
|
|
|
|
#define SCRYPT_BUFFER_SIZE (131072 + 63)
|
|
|
|
void scrypt_core(uint32_t *X, uint32_t *V);
|
|
|
|
#else
|
|
|
|
#define SCRYPT_BUFFER_SIZE (131072 + 63)
|
|
|
|
static inline void salsa20_8(uint32_t B[16], const uint32_t Bx[16])
|
|
{
|
|
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
|
|
int i;
|
|
|
|
x00 = (B[ 0] ^= Bx[ 0]);
|
|
x01 = (B[ 1] ^= Bx[ 1]);
|
|
x02 = (B[ 2] ^= Bx[ 2]);
|
|
x03 = (B[ 3] ^= Bx[ 3]);
|
|
x04 = (B[ 4] ^= Bx[ 4]);
|
|
x05 = (B[ 5] ^= Bx[ 5]);
|
|
x06 = (B[ 6] ^= Bx[ 6]);
|
|
x07 = (B[ 7] ^= Bx[ 7]);
|
|
x08 = (B[ 8] ^= Bx[ 8]);
|
|
x09 = (B[ 9] ^= Bx[ 9]);
|
|
x10 = (B[10] ^= Bx[10]);
|
|
x11 = (B[11] ^= Bx[11]);
|
|
x12 = (B[12] ^= Bx[12]);
|
|
x13 = (B[13] ^= Bx[13]);
|
|
x14 = (B[14] ^= Bx[14]);
|
|
x15 = (B[15] ^= Bx[15]);
|
|
for (i = 0; i < 8; i += 2) {
|
|
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
|
|
/* Operate on columns. */
|
|
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7);
|
|
x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
|
|
|
|
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9);
|
|
x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
|
|
|
|
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13);
|
|
x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
|
|
|
|
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18);
|
|
x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
|
|
|
|
/* Operate on rows. */
|
|
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7);
|
|
x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
|
|
|
|
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9);
|
|
x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
|
|
|
|
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13);
|
|
x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
|
|
|
|
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18);
|
|
x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
|
|
#undef R
|
|
}
|
|
B[ 0] += x00;
|
|
B[ 1] += x01;
|
|
B[ 2] += x02;
|
|
B[ 3] += x03;
|
|
B[ 4] += x04;
|
|
B[ 5] += x05;
|
|
B[ 6] += x06;
|
|
B[ 7] += x07;
|
|
B[ 8] += x08;
|
|
B[ 9] += x09;
|
|
B[10] += x10;
|
|
B[11] += x11;
|
|
B[12] += x12;
|
|
B[13] += x13;
|
|
B[14] += x14;
|
|
B[15] += x15;
|
|
}
|
|
|
|
static inline void scrypt_core(uint32_t *X, uint32_t *V)
|
|
{
|
|
uint32_t i, j, k;
|
|
uint64_t *p1, *p2;
|
|
|
|
p1 = (uint64_t *)X;
|
|
for (i = 0; i < 1024; i++) {
|
|
memcpy(&V[i * 32], X, 128);
|
|
salsa20_8(&X[0], &X[16]);
|
|
salsa20_8(&X[16], &X[0]);
|
|
}
|
|
for (i = 0; i < 1024; i++) {
|
|
j = X[16] & 1023;
|
|
p2 = (uint64_t *)(&V[j * 32]);
|
|
for (k = 0; k < 16; k++)
|
|
p1[k] ^= p2[k];
|
|
salsa20_8(&X[0], &X[16]);
|
|
salsa20_8(&X[16], &X[0]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
unsigned char *scrypt_buffer_alloc()
|
|
{
|
|
return malloc(SCRYPT_BUFFER_SIZE);
|
|
}
|
|
|
|
static void scrypt_1024_1_1_256_sp(const uint32_t *input, uint32_t *output,
|
|
unsigned char *scratchpad)
|
|
{
|
|
uint32_t tstate[8], ostate[8];
|
|
uint32_t *V;
|
|
uint32_t X[32];
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
|
|
|
|
HMAC_SHA256_80_init(input, tstate, ostate);
|
|
PBKDF2_SHA256_80_128(tstate, ostate, input, X);
|
|
|
|
scrypt_core(X, V);
|
|
|
|
return PBKDF2_SHA256_128_32(tstate, ostate, X, output);
|
|
}
|
|
|
|
#ifdef SCRYPT_3WAY
|
|
|
|
static void scrypt_1024_1_1_256_sp_2way(const uint32_t *input1,
|
|
const uint32_t *input2, uint32_t *output1, uint32_t *output2,
|
|
unsigned char *scratchpad)
|
|
{
|
|
uint32_t tstate1[8], tstate2[8];
|
|
uint32_t ostate1[8], ostate2[8];
|
|
uint32_t *V;
|
|
uint32_t X[32], Y[32];
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
|
|
|
|
HMAC_SHA256_80_init(input1, tstate1, ostate1);
|
|
HMAC_SHA256_80_init(input2, tstate2, ostate2);
|
|
PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X);
|
|
PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y);
|
|
|
|
scrypt_core_2way(X, Y, V);
|
|
|
|
PBKDF2_SHA256_128_32(tstate1, ostate1, X, output1);
|
|
PBKDF2_SHA256_128_32(tstate2, ostate2, Y, output2);
|
|
}
|
|
|
|
static void scrypt_1024_1_1_256_sp_3way(
|
|
const uint32_t *input1, const uint32_t *input2, const uint32_t *input3,
|
|
uint32_t *output1, uint32_t *output2, uint32_t *output3,
|
|
unsigned char *scratchpad)
|
|
{
|
|
#ifdef SHA256_4WAY
|
|
uint32_t tstate[4 * 8], ostate[4 * 8];
|
|
uint32_t input[4 * 20], output[4 * 32];
|
|
uint32_t X[32], Y[32], Z[32];
|
|
uint32_t W[4 * 32];
|
|
uint32_t *V;
|
|
int i;
|
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
|
|
|
|
for (i = 0; i < 20; i++) {
|
|
input[4 * i + 0] = input1[i];
|
|
input[4 * i + 1] = input2[i];
|
|
input[4 * i + 2] = input3[i];
|
|
}
|
|
HMAC_SHA256_80_init_4way(input, tstate, ostate);
|
|
PBKDF2_SHA256_80_128_4way(tstate, ostate, input, W);
|
|
for (i = 0; i < 32; i++) {
|
|
X[i] = W[4 * i + 0];
|
|
Y[i] = W[4 * i + 1];
|
|
Z[i] = W[4 * i + 2];
|
|
}
|
|
scrypt_core_3way(X, Y, Z, V);
|
|
for (i = 0; i < 32; i++) {
|
|
W[4 * i + 0] = X[i];
|
|
W[4 * i + 1] = Y[i];
|
|
W[4 * i + 2] = Z[i];
|
|
}
|
|
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, output);
|
|
for (i = 0; i < 8; i++) {
|
|
output1[i] = output[4 * i + 0];
|
|
output2[i] = output[4 * i + 1];
|
|
output3[i] = output[4 * i + 2];
|
|
}
|
|
#else
|
|
uint32_t tstate1[8], tstate2[8], tstate3[8];
|
|
uint32_t ostate1[8], ostate2[8], ostate3[8];
|
|
uint32_t X[32], Y[32], Z[32];
|
|
uint32_t *V;
|
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
|
|
|
|
HMAC_SHA256_80_init(input1, tstate1, ostate1);
|
|
HMAC_SHA256_80_init(input2, tstate2, ostate2);
|
|
HMAC_SHA256_80_init(input3, tstate3, ostate3);
|
|
PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X);
|
|
PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y);
|
|
PBKDF2_SHA256_80_128(tstate3, ostate3, input3, Z);
|
|
|
|
scrypt_core_3way(X, Y, Z, V);
|
|
|
|
PBKDF2_SHA256_128_32(tstate1, ostate1, X, output1);
|
|
PBKDF2_SHA256_128_32(tstate2, ostate2, Y, output2);
|
|
PBKDF2_SHA256_128_32(tstate3, ostate3, Z, output3);
|
|
#endif /* SHA256_4WAY*/
|
|
}
|
|
|
|
#endif /* SCRYPT_3WAY */
|
|
|
|
__attribute__ ((noinline)) static int confirm_hash(const uint32_t *hash,
|
|
const uint32_t *target)
|
|
{
|
|
int i;
|
|
for (i = 7; i >= 0; i--) {
|
|
uint32_t t = le32dec(&target[i]);
|
|
if (hash[i] > t)
|
|
return 0;
|
|
if (hash[i] < t)
|
|
return 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int scanhash_scrypt(int thr_id, unsigned char *pdata,
|
|
unsigned char *scratchbuf, const unsigned char *ptarget,
|
|
uint32_t max_nonce, uint32_t *next_nonce, unsigned long *hashes_done)
|
|
{
|
|
uint32_t data[20], hash[8];
|
|
#ifdef SCRYPT_3WAY
|
|
uint32_t data2[20], hash2[8];
|
|
uint32_t data3[20], hash3[8];
|
|
int throughput;
|
|
#endif
|
|
unsigned long first_nonce = *next_nonce;
|
|
uint32_t n = *next_nonce;
|
|
uint32_t Htarg = le32dec(&((const uint32_t *)ptarget)[7]);
|
|
int i;
|
|
|
|
for (i = 0; i < 19; i++)
|
|
data[i] = be32dec(&((const uint32_t *)pdata)[i]);
|
|
#ifdef SCRYPT_3WAY
|
|
memcpy(data2, data, 80);
|
|
memcpy(data3, data, 80);
|
|
throughput = scrypt_best_throughput();
|
|
#endif
|
|
|
|
do {
|
|
data[19] = n++;
|
|
#ifdef SCRYPT_3WAY
|
|
if (throughput >= 2 && n <= max_nonce) {
|
|
data2[19] = n++;
|
|
if (throughput >= 3 && n <= max_nonce) {
|
|
data3[19] = n++;
|
|
scrypt_1024_1_1_256_sp_3way(data, data2, data3, hash, hash2, hash3, scratchbuf);
|
|
if (hash3[7] <= Htarg && confirm_hash(hash3, (uint32_t *)ptarget)) {
|
|
be32enc(&((uint32_t *)pdata)[19], data3[19]);
|
|
*next_nonce = n;
|
|
*hashes_done = n - first_nonce;
|
|
return true;
|
|
}
|
|
} else {
|
|
scrypt_1024_1_1_256_sp_2way(data, data2, hash, hash2, scratchbuf);
|
|
}
|
|
if (hash2[7] <= Htarg && confirm_hash(hash2, (uint32_t *)ptarget)) {
|
|
be32enc(&((uint32_t *)pdata)[19], data2[19]);
|
|
*next_nonce = n;
|
|
*hashes_done = n - first_nonce;
|
|
return true;
|
|
}
|
|
} else {
|
|
scrypt_1024_1_1_256_sp(data, hash, scratchbuf);
|
|
}
|
|
#else
|
|
scrypt_1024_1_1_256_sp(data, hash, scratchbuf);
|
|
#endif
|
|
if (hash[7] <= Htarg && confirm_hash(hash, (uint32_t *)ptarget)) {
|
|
be32enc(&((uint32_t *)pdata)[19], data[19]);
|
|
*next_nonce = n;
|
|
*hashes_done = n - first_nonce;
|
|
return true;
|
|
}
|
|
} while (n <= max_nonce && !work_restart[thr_id].restart);
|
|
|
|
*next_nonce = n;
|
|
*hashes_done = n - first_nonce;
|
|
return false;
|
|
}
|