kivy-ios/recipes/numpy/__init__.py

55 lines
2 KiB
Python
Raw Normal View History

from toolchain import CythonRecipe
from os.path import join
2015-02-24 12:02:31 +01:00
import sh
import shutil
class NumpyRecipe(CythonRecipe):
2015-02-24 12:02:31 +01:00
version = "1.9.1"
url = "http://pypi.python.org/packages/source/n/numpy/numpy-{version}.tar.gz"
library = "libnumpy.a"
libraries = ["libnpymath.a", "libnpysort.a"]
depends = ["python"]
pbx_frameworks = ["Accelerate"]
def prebuild_arch(self, arch):
if self.has_marker("patched"):
return
self.apply_patch("numpy-1.9.1.patch")
self.set_marker("patched")
def get_recipe_env(self, arch):
env = super(NumpyRecipe, self).get_recipe_env(arch)
2015-02-24 12:02:31 +01:00
# CC must have the CFLAGS with arm arch, because numpy tries first to
# compile and execute an empty C to see if the compiler works. This is
# obviously not working when crosscompiling
env["CC"] = "{} {}".format(env["CC"], env["CFLAGS"])
2015-02-24 12:02:31 +01:00
# Numpy configuration. Don't try to compile anything related to it,
# we're going to use the Accelerate framework
env["NPYCONFIG"] = "env BLAS=None LAPACK=None ATLAS=None"
return env
2015-02-24 12:02:31 +01:00
def build_arch(self, arch):
super(NumpyRecipe, self).build_arch(arch)
2015-02-24 12:02:31 +01:00
sh.cp(sh.glob(join(self.build_dir, "build", "temp.*", "libnpy*.a")),
self.build_dir)
def reduce_python_package(self):
dest_dir = join(self.ctx.site_packages_dir, "numpy")
2015-02-24 12:02:31 +01:00
shutil.rmtree(join(dest_dir, "core", "include"))
shutil.rmtree(join(dest_dir, "core", "tests"))
shutil.rmtree(join(dest_dir, "distutils"))
shutil.rmtree(join(dest_dir, "doc"))
shutil.rmtree(join(dest_dir, "f2py", "tests"))
shutil.rmtree(join(dest_dir, "fft", "tests"))
shutil.rmtree(join(dest_dir, "lib", "tests"))
shutil.rmtree(join(dest_dir, "ma", "tests"))
shutil.rmtree(join(dest_dir, "matrixlib", "tests"))
shutil.rmtree(join(dest_dir, "polynomial", "tests"))
shutil.rmtree(join(dest_dir, "random", "tests"))
shutil.rmtree(join(dest_dir, "tests"))
recipe = NumpyRecipe()