lbcd/database/ldb/tx.go

682 lines
20 KiB
Go
Raw Normal View History

// Copyright (c) 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ldb
import (
"bytes"
"encoding/binary"
"errors"
2014-07-03 02:47:24 +02:00
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/golangcrypto/ripemd160"
"github.com/btcsuite/goleveldb/leveldb"
"github.com/btcsuite/goleveldb/leveldb/iterator"
"github.com/btcsuite/goleveldb/leveldb/util"
)
const (
// Each address index is 34 bytes:
// --------------------------------------------------------
// | Prefix | Hash160 | BlkHeight | Tx Offset | Tx Size |
// --------------------------------------------------------
// | 3 bytes | 20 bytes | 4 bytes | 4 bytes | 4 bytes |
// --------------------------------------------------------
addrIndexKeyLength = 3 + ripemd160.Size + 4 + 4 + 4
batchDeleteThreshold = 10000
addrIndexCurrentVersion = 1
)
var addrIndexMetaDataKey = []byte("addrindex")
// All address index entries share this prefix to facilitate the use of
// iterators.
var addrIndexKeyPrefix = []byte("a+-")
// Address index version is required to drop/rebuild address index if version
// is older than current as the format of the index may have changed. This is
// true when going from no version to version 1 as the address index is stored
// as big endian in version 1 and little endian in the original code. Version
// is stored as two bytes, little endian (to match all the code but the index).
var addrIndexVersionKey = []byte("addrindexversion")
type txUpdateObj struct {
txSha *wire.ShaHash
blkHeight int32
txoff int
txlen int
ntxout int
spentData []byte
delete bool
}
type spentTx struct {
blkHeight int32
txoff int
txlen int
numTxO int
delete bool
}
type spentTxUpdate struct {
2013-11-21 16:48:57 +01:00
txl []*spentTx
delete bool
}
type txAddrIndex struct {
hash160 [ripemd160.Size]byte
blkHeight int32
txoffset int
txlen int
}
// InsertTx inserts a tx hash and its associated data into the database.
func (db *LevelDb) InsertTx(txsha *wire.ShaHash, height int32, txoff int, txlen int, spentbuf []byte) (err error) {
db.dbLock.Lock()
defer db.dbLock.Unlock()
return db.insertTx(txsha, height, txoff, txlen, spentbuf)
}
// insertTx inserts a tx hash and its associated data into the database.
// Must be called with db lock held.
func (db *LevelDb) insertTx(txSha *wire.ShaHash, height int32, txoff int, txlen int, spentbuf []byte) (err error) {
var txU txUpdateObj
txU.txSha = txSha
txU.blkHeight = height
txU.txoff = txoff
txU.txlen = txlen
txU.spentData = spentbuf
db.txUpdateMap[*txSha] = &txU
return nil
}
// formatTx generates the value buffer for the Tx db.
func (db *LevelDb) formatTx(txu *txUpdateObj) []byte {
blkHeight := uint64(txu.blkHeight)
txOff := uint32(txu.txoff)
txLen := uint32(txu.txlen)
spentbuf := txu.spentData
txW := make([]byte, 16+len(spentbuf))
binary.LittleEndian.PutUint64(txW[0:8], blkHeight)
binary.LittleEndian.PutUint32(txW[8:12], txOff)
binary.LittleEndian.PutUint32(txW[12:16], txLen)
copy(txW[16:], spentbuf)
return txW[:]
}
func (db *LevelDb) getTxData(txsha *wire.ShaHash) (int32, int, int, []byte, error) {
key := shaTxToKey(txsha)
buf, err := db.lDb.Get(key, db.ro)
if err != nil {
return 0, 0, 0, nil, err
}
blkHeight := binary.LittleEndian.Uint64(buf[0:8])
txOff := binary.LittleEndian.Uint32(buf[8:12])
txLen := binary.LittleEndian.Uint32(buf[12:16])
spentBuf := make([]byte, len(buf)-16)
copy(spentBuf, buf[16:])
return int32(blkHeight), int(txOff), int(txLen), spentBuf, nil
}
func (db *LevelDb) getTxFullySpent(txsha *wire.ShaHash) ([]*spentTx, error) {
var badTxList, spentTxList []*spentTx
key := shaSpentTxToKey(txsha)
buf, err := db.lDb.Get(key, db.ro)
if err == leveldb.ErrNotFound {
return badTxList, database.ErrTxShaMissing
} else if err != nil {
return badTxList, err
}
txListLen := len(buf) / 20
spentTxList = make([]*spentTx, txListLen, txListLen)
for i := range spentTxList {
offset := i * 20
2014-07-07 17:07:30 +02:00
blkHeight := binary.LittleEndian.Uint64(buf[offset : offset+8])
txOff := binary.LittleEndian.Uint32(buf[offset+8 : offset+12])
txLen := binary.LittleEndian.Uint32(buf[offset+12 : offset+16])
numTxO := binary.LittleEndian.Uint32(buf[offset+16 : offset+20])
sTx := spentTx{
blkHeight: int32(blkHeight),
txoff: int(txOff),
txlen: int(txLen),
numTxO: int(numTxO),
}
spentTxList[i] = &sTx
}
return spentTxList, nil
}
func (db *LevelDb) formatTxFullySpent(sTxList []*spentTx) []byte {
txW := make([]byte, 20*len(sTxList))
for i, sTx := range sTxList {
blkHeight := uint64(sTx.blkHeight)
txOff := uint32(sTx.txoff)
txLen := uint32(sTx.txlen)
numTxO := uint32(sTx.numTxO)
offset := i * 20
binary.LittleEndian.PutUint64(txW[offset:offset+8], blkHeight)
binary.LittleEndian.PutUint32(txW[offset+8:offset+12], txOff)
binary.LittleEndian.PutUint32(txW[offset+12:offset+16], txLen)
binary.LittleEndian.PutUint32(txW[offset+16:offset+20], numTxO)
}
return txW
}
// ExistsTxSha returns if the given tx sha exists in the database
func (db *LevelDb) ExistsTxSha(txsha *wire.ShaHash) (bool, error) {
db.dbLock.Lock()
defer db.dbLock.Unlock()
return db.existsTxSha(txsha)
}
// existsTxSha returns if the given tx sha exists in the database.o
// Must be called with the db lock held.
func (db *LevelDb) existsTxSha(txSha *wire.ShaHash) (bool, error) {
key := shaTxToKey(txSha)
return db.lDb.Has(key, db.ro)
}
// FetchTxByShaList returns the most recent tx of the name fully spent or not
func (db *LevelDb) FetchTxByShaList(txShaList []*wire.ShaHash) []*database.TxListReply {
db.dbLock.Lock()
defer db.dbLock.Unlock()
// until the fully spent separation of tx is complete this is identical
// to FetchUnSpentTxByShaList
replies := make([]*database.TxListReply, len(txShaList))
for i, txsha := range txShaList {
tx, blockSha, height, txspent, err := db.fetchTxDataBySha(txsha)
btxspent := []bool{}
if err == nil {
btxspent = make([]bool, len(tx.TxOut), len(tx.TxOut))
for idx := range tx.TxOut {
byteidx := idx / 8
byteoff := uint(idx % 8)
btxspent[idx] = (txspent[byteidx] & (byte(1) << byteoff)) != 0
}
}
if err == database.ErrTxShaMissing {
// if the unspent pool did not have the tx,
// look in the fully spent pool (only last instance)
sTxList, fSerr := db.getTxFullySpent(txsha)
if fSerr == nil && len(sTxList) != 0 {
idx := len(sTxList) - 1
stx := sTxList[idx]
tx, blockSha, _, _, err = db.fetchTxDataByLoc(
2013-11-21 16:48:57 +01:00
stx.blkHeight, stx.txoff, stx.txlen, []byte{})
if err == nil {
btxspent = make([]bool, len(tx.TxOut))
for i := range btxspent {
btxspent[i] = true
}
}
}
}
txlre := database.TxListReply{Sha: txsha, Tx: tx, BlkSha: blockSha, Height: height, TxSpent: btxspent, Err: err}
replies[i] = &txlre
}
return replies
}
// FetchUnSpentTxByShaList given a array of ShaHash, look up the transactions
// and return them in a TxListReply array.
func (db *LevelDb) FetchUnSpentTxByShaList(txShaList []*wire.ShaHash) []*database.TxListReply {
db.dbLock.Lock()
defer db.dbLock.Unlock()
replies := make([]*database.TxListReply, len(txShaList))
for i, txsha := range txShaList {
tx, blockSha, height, txspent, err := db.fetchTxDataBySha(txsha)
btxspent := []bool{}
if err == nil {
btxspent = make([]bool, len(tx.TxOut), len(tx.TxOut))
for idx := range tx.TxOut {
byteidx := idx / 8
byteoff := uint(idx % 8)
btxspent[idx] = (txspent[byteidx] & (byte(1) << byteoff)) != 0
}
}
txlre := database.TxListReply{Sha: txsha, Tx: tx, BlkSha: blockSha, Height: height, TxSpent: btxspent, Err: err}
replies[i] = &txlre
}
return replies
}
// fetchTxDataBySha returns several pieces of data regarding the given sha.
func (db *LevelDb) fetchTxDataBySha(txsha *wire.ShaHash) (rtx *wire.MsgTx, rblksha *wire.ShaHash, rheight int32, rtxspent []byte, err error) {
var blkHeight int32
var txspent []byte
var txOff, txLen int
blkHeight, txOff, txLen, txspent, err = db.getTxData(txsha)
if err != nil {
if err == leveldb.ErrNotFound {
err = database.ErrTxShaMissing
}
return
}
return db.fetchTxDataByLoc(blkHeight, txOff, txLen, txspent)
}
// fetchTxDataByLoc returns several pieces of data regarding the given tx
// located by the block/offset/size location
func (db *LevelDb) fetchTxDataByLoc(blkHeight int32, txOff int, txLen int, txspent []byte) (rtx *wire.MsgTx, rblksha *wire.ShaHash, rheight int32, rtxspent []byte, err error) {
var blksha *wire.ShaHash
var blkbuf []byte
blksha, blkbuf, err = db.getBlkByHeight(blkHeight)
if err != nil {
if err == leveldb.ErrNotFound {
err = database.ErrTxShaMissing
}
return
}
//log.Trace("transaction %v is at block %v %v txoff %v, txlen %v\n",
// txsha, blksha, blkHeight, txOff, txLen)
if len(blkbuf) < txOff+txLen {
err = database.ErrTxShaMissing
return
}
rbuf := bytes.NewReader(blkbuf[txOff : txOff+txLen])
var tx wire.MsgTx
err = tx.Deserialize(rbuf)
if err != nil {
log.Warnf("unable to decode tx block %v %v txoff %v txlen %v",
blkHeight, blksha, txOff, txLen)
return
}
return &tx, blksha, blkHeight, txspent, nil
}
// FetchTxBySha returns some data for the given Tx Sha.
func (db *LevelDb) FetchTxBySha(txsha *wire.ShaHash) ([]*database.TxListReply, error) {
2014-05-30 21:03:39 +02:00
db.dbLock.Lock()
defer db.dbLock.Unlock()
replylen := 0
replycnt := 0
tx, blksha, height, txspent, txerr := db.fetchTxDataBySha(txsha)
if txerr == nil {
replylen++
} else {
if txerr != database.ErrTxShaMissing {
return []*database.TxListReply{}, txerr
}
}
sTxList, fSerr := db.getTxFullySpent(txsha)
if fSerr != nil {
if fSerr != database.ErrTxShaMissing {
return []*database.TxListReply{}, fSerr
}
} else {
replylen += len(sTxList)
}
replies := make([]*database.TxListReply, replylen)
if fSerr == nil {
for _, stx := range sTxList {
tx, blksha, _, _, err := db.fetchTxDataByLoc(
2013-11-21 16:48:57 +01:00
stx.blkHeight, stx.txoff, stx.txlen, []byte{})
if err != nil {
if err != leveldb.ErrNotFound {
return []*database.TxListReply{}, err
}
continue
}
btxspent := make([]bool, len(tx.TxOut), len(tx.TxOut))
for i := range btxspent {
btxspent[i] = true
}
txlre := database.TxListReply{Sha: txsha, Tx: tx, BlkSha: blksha, Height: stx.blkHeight, TxSpent: btxspent, Err: nil}
replies[replycnt] = &txlre
replycnt++
}
}
if txerr == nil {
btxspent := make([]bool, len(tx.TxOut), len(tx.TxOut))
for idx := range tx.TxOut {
byteidx := idx / 8
byteoff := uint(idx % 8)
btxspent[idx] = (txspent[byteidx] & (byte(1) << byteoff)) != 0
}
txlre := database.TxListReply{Sha: txsha, Tx: tx, BlkSha: blksha, Height: height, TxSpent: btxspent, Err: nil}
replies[replycnt] = &txlre
replycnt++
}
return replies, nil
}
// addrIndexToKey serializes the passed txAddrIndex for storage within the DB.
// We want to use BigEndian to store at least block height and TX offset
// in order to ensure that the transactions are sorted in the index.
// This gives us the ability to use the index in more client-side
// applications that are order-dependent (specifically by dependency).
func addrIndexToKey(index *txAddrIndex) []byte {
record := make([]byte, addrIndexKeyLength, addrIndexKeyLength)
copy(record[0:3], addrIndexKeyPrefix)
copy(record[3:23], index.hash160[:])
// The index itself.
binary.BigEndian.PutUint32(record[23:27], uint32(index.blkHeight))
binary.BigEndian.PutUint32(record[27:31], uint32(index.txoffset))
binary.BigEndian.PutUint32(record[31:35], uint32(index.txlen))
return record
}
// unpackTxIndex deserializes the raw bytes of a address tx index.
func unpackTxIndex(rawIndex [12]byte) *txAddrIndex {
return &txAddrIndex{
blkHeight: int32(binary.BigEndian.Uint32(rawIndex[0:4])),
txoffset: int(binary.BigEndian.Uint32(rawIndex[4:8])),
txlen: int(binary.BigEndian.Uint32(rawIndex[8:12])),
}
}
// bytesPrefix returns key range that satisfy the given prefix.
// This only applicable for the standard 'bytes comparer'.
func bytesPrefix(prefix []byte) *util.Range {
var limit []byte
for i := len(prefix) - 1; i >= 0; i-- {
c := prefix[i]
if c < 0xff {
limit = make([]byte, i+1)
copy(limit, prefix)
limit[i] = c + 1
break
}
}
return &util.Range{Start: prefix, Limit: limit}
}
func advanceIterator(iter iterator.IteratorSeeker, reverse bool) bool {
if reverse {
return iter.Prev()
}
return iter.Next()
}
// FetchTxsForAddr looks up and returns all transactions which either
// spend from a previously created output of the passed address, or
// create a new output locked to the passed address. The, `limit` parameter
// should be the max number of transactions to be returned. Additionally, if the
// caller wishes to seek forward in the results some amount, the 'seek'
// represents how many results to skip.
func (db *LevelDb) FetchTxsForAddr(addr btcutil.Address, skip int,
limit int, reverse bool) ([]*database.TxListReply, int, error) {
db.dbLock.Lock()
defer db.dbLock.Unlock()
// Enforce constraints for skip and limit.
if skip < 0 {
return nil, 0, errors.New("offset for skip must be positive")
}
if limit < 0 {
return nil, 0, errors.New("value for limit must be positive")
}
// Parse address type, bailing on an unknown type.
var addrKey []byte
switch addr := addr.(type) {
case *btcutil.AddressPubKeyHash:
hash160 := addr.Hash160()
addrKey = hash160[:]
case *btcutil.AddressScriptHash:
hash160 := addr.Hash160()
addrKey = hash160[:]
case *btcutil.AddressPubKey:
hash160 := addr.AddressPubKeyHash().Hash160()
addrKey = hash160[:]
default:
return nil, 0, database.ErrUnsupportedAddressType
}
// Create the prefix for our search.
addrPrefix := make([]byte, 23, 23)
copy(addrPrefix[0:3], addrIndexKeyPrefix)
copy(addrPrefix[3:23], addrKey)
iter := db.lDb.NewIterator(bytesPrefix(addrPrefix), nil)
skipped := 0
if reverse {
// Go to the last element if reverse iterating.
iter.Last()
// Skip "one past" the last element so the loops below don't
// miss the last element due to Prev() being called first.
// We can safely ignore iterator exhaustion since the loops
// below will see there's no keys anyway.
iter.Next()
}
for skip != 0 && advanceIterator(iter, reverse) {
skip--
skipped++
}
// Iterate through all address indexes that match the targeted prefix.
var replies []*database.TxListReply
var rawIndex [12]byte
for advanceIterator(iter, reverse) && limit != 0 {
copy(rawIndex[:], iter.Key()[23:35])
addrIndex := unpackTxIndex(rawIndex)
tx, blkSha, blkHeight, _, err := db.fetchTxDataByLoc(addrIndex.blkHeight,
addrIndex.txoffset, addrIndex.txlen, []byte{})
if err != nil {
// Eat a possible error due to a potential re-org.
continue
}
txSha := tx.TxSha()
txReply := &database.TxListReply{Sha: &txSha, Tx: tx,
BlkSha: blkSha, Height: blkHeight, TxSpent: []bool{}, Err: err}
replies = append(replies, txReply)
limit--
}
iter.Release()
if err := iter.Error(); err != nil {
return nil, 0, err
}
return replies, skipped, nil
}
// UpdateAddrIndexForBlock updates the stored addrindex with passed
// index information for a particular block height. Additionally, it
// will update the stored meta-data related to the curent tip of the
// addr index. These two operations are performed in an atomic
// transaction which is commited before the function returns.
// Transactions indexed by address are stored with the following format:
// * prefix || hash160 || blockHeight || txoffset || txlen
// Indexes are stored purely in the key, with blank data for the actual value
// in order to facilitate ease of iteration by their shared prefix and
// also to allow limiting the number of returned transactions (RPC).
// Alternatively, indexes for each address could be stored as an
// append-only list for the stored value. However, this add unnecessary
// overhead when storing and retrieving since the entire list must
// be fetched each time.
func (db *LevelDb) UpdateAddrIndexForBlock(blkSha *wire.ShaHash, blkHeight int32, addrIndex database.BlockAddrIndex) error {
db.dbLock.Lock()
defer db.dbLock.Unlock()
var blankData []byte
batch := db.lBatch()
defer db.lbatch.Reset()
// Write all data for the new address indexes in a single batch
// transaction.
for addrKey, indexes := range addrIndex {
for _, txLoc := range indexes {
index := &txAddrIndex{
hash160: addrKey,
blkHeight: blkHeight,
txoffset: txLoc.TxStart,
txlen: txLoc.TxLen,
}
// The index is stored purely in the key.
packedIndex := addrIndexToKey(index)
batch.Put(packedIndex, blankData)
}
}
// Update tip of addrindex.
newIndexTip := make([]byte, 40, 40)
copy(newIndexTip[0:32], blkSha[:])
binary.LittleEndian.PutUint64(newIndexTip[32:40], uint64(blkHeight))
batch.Put(addrIndexMetaDataKey, newIndexTip)
// Ensure we're writing an address index version
newIndexVersion := make([]byte, 2, 2)
binary.LittleEndian.PutUint16(newIndexVersion[0:2],
uint16(addrIndexCurrentVersion))
batch.Put(addrIndexVersionKey, newIndexVersion)
if err := db.lDb.Write(batch, db.wo); err != nil {
return err
}
db.lastAddrIndexBlkIdx = blkHeight
db.lastAddrIndexBlkSha = *blkSha
return nil
}
// DeleteAddrIndex deletes the entire addrindex stored within the DB.
// It also resets the cached in-memory metadata about the addr index.
func (db *LevelDb) DeleteAddrIndex() error {
db.dbLock.Lock()
defer db.dbLock.Unlock()
batch := db.lBatch()
defer batch.Reset()
// Delete the entire index along with any metadata about it.
iter := db.lDb.NewIterator(bytesPrefix(addrIndexKeyPrefix), db.ro)
numInBatch := 0
for iter.Next() {
key := iter.Key()
// With a 24-bit index key prefix, 1 in every 2^24 keys is a collision.
// We check the length to make sure we only delete address index keys.
if len(key) == addrIndexKeyLength {
batch.Delete(key)
numInBatch++
}
// Delete in chunks to potentially avoid very large batches.
if numInBatch >= batchDeleteThreshold {
if err := db.lDb.Write(batch, db.wo); err != nil {
iter.Release()
return err
}
batch.Reset()
numInBatch = 0
}
}
iter.Release()
if err := iter.Error(); err != nil {
return err
}
batch.Delete(addrIndexMetaDataKey)
batch.Delete(addrIndexVersionKey)
if err := db.lDb.Write(batch, db.wo); err != nil {
return err
}
db.lastAddrIndexBlkIdx = -1
db.lastAddrIndexBlkSha = wire.ShaHash{}
return nil
}
// deleteOldAddrIndex deletes the entire addrindex stored within the DB for a
// 2-byte addrIndexKeyPrefix. It also resets the cached in-memory metadata about
// the addr index.
func (db *LevelDb) deleteOldAddrIndex() error {
db.dbLock.Lock()
defer db.dbLock.Unlock()
batch := db.lBatch()
defer batch.Reset()
// Delete the entire index along with any metadata about it.
iter := db.lDb.NewIterator(bytesPrefix([]byte("a-")), db.ro)
numInBatch := 0
for iter.Next() {
key := iter.Key()
// With a 24-bit index key prefix, 1 in every 2^24 keys is a collision.
// We check the length to make sure we only delete address index keys.
// We also check the last two bytes to make sure the suffix doesn't
// match other types of index that are 34 bytes long.
if len(key) == 34 && !bytes.HasSuffix(key, recordSuffixTx) &&
!bytes.HasSuffix(key, recordSuffixSpentTx) {
batch.Delete(key)
numInBatch++
}
// Delete in chunks to potentially avoid very large batches.
if numInBatch >= batchDeleteThreshold {
if err := db.lDb.Write(batch, db.wo); err != nil {
iter.Release()
return err
}
batch.Reset()
numInBatch = 0
}
}
iter.Release()
if err := iter.Error(); err != nil {
return err
}
batch.Delete(addrIndexMetaDataKey)
batch.Delete(addrIndexVersionKey)
if err := db.lDb.Write(batch, db.wo); err != nil {
return err
}
db.lastAddrIndexBlkIdx = -1
db.lastAddrIndexBlkSha = wire.ShaHash{}
return nil
}