lbcd/peer/log.go

242 lines
6.5 KiB
Go
Raw Normal View History

peer: Refactor peer code into its own package. This commit introduces package peer which contains peer related features refactored from peer.go. The following is an overview of the features the package provides: - Provides a basic concurrent safe bitcoin peer for handling bitcoin communications via the peer-to-peer protocol - Full duplex reading and writing of bitcoin protocol messages - Automatic handling of the initial handshake process including protocol version negotiation - Automatic periodic keep-alive pinging and pong responses - Asynchronous message queueing of outbound messages with optional channel for notification when the message is actually sent - Inventory message batching and send trickling with known inventory detection and avoidance - Ability to wait for shutdown/disconnect - Flexible peer configuration - Caller is responsible for creating outgoing connections and listening for incoming connections so they have flexibility to establish connections as they see fit (proxies, etc.) - User agent name and version - Bitcoin network - Service support signalling (full nodes, bloom filters, etc.) - Maximum supported protocol version - Ability to register callbacks for handling bitcoin protocol messages - Proper handling of bloom filter related commands when the caller does not specify the related flag to signal support - Disconnects the peer when the protocol version is high enough - Does not invoke the related callbacks for older protocol versions - Snapshottable peer statistics such as the total number of bytes read and written, the remote address, user agent, and negotiated protocol version - Helper functions for pushing addresses, getblocks, getheaders, and reject messages - These could all be sent manually via the standard message output function, but the helpers provide additional nice functionality such as duplicate filtering and address randomization - Full documentation with example usage - Test coverage In addition to the addition of the new package, btcd has been refactored to make use of the new package by extending the basic peer it provides to work with the blockmanager and server to act as a full node. The following is a broad overview of the changes to integrate the package: - The server is responsible for all connection management including persistent peers and banning - Callbacks for all messages that are required to implement a full node are registered - Logic necessary to serve data and behave as a full node is now in the callback registered with the peer Finally, the following peer-related things have been improved as a part of this refactor: - Don't log or send reject message due to peer disconnects - Remove trace logs that aren't particularly helpful - Finish an old TODO to switch the queue WaitGroup over to a channel - Improve various comments and fix some code consistency cases - Improve a few logging bits - Implement a most-recently-used nonce tracking for detecting self connections and generate a unique nonce for each peer
2015-10-02 08:03:20 +02:00
// Copyright (c) 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package peer
import (
"errors"
"fmt"
"io"
"strings"
"time"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btclog"
)
const (
// maxRejectReasonLen is the maximum length of a sanitized reject reason
// that will be logged.
maxRejectReasonLen = 250
)
// log is a logger that is initialized with no output filters. This
// means the package will not perform any logging by default until the caller
// requests it.
var log btclog.Logger
// The default amount of logging is none.
func init() {
DisableLog()
}
// DisableLog disables all library log output. Logging output is disabled
// by default until either UseLogger or SetLogWriter are called.
func DisableLog() {
log = btclog.Disabled
}
// UseLogger uses a specified Logger to output package logging info.
// This should be used in preference to SetLogWriter if the caller is also
// using btclog.
func UseLogger(logger btclog.Logger) {
log = logger
}
// SetLogWriter uses a specified io.Writer to output package logging info.
// This allows a caller to direct package logging output without needing a
// dependency on seelog. If the caller is also using btclog, UseLogger should
// be used instead.
func SetLogWriter(w io.Writer, level string) error {
if w == nil {
return errors.New("nil writer")
}
lvl, ok := btclog.LogLevelFromString(level)
if !ok {
return errors.New("invalid log level")
}
l, err := btclog.NewLoggerFromWriter(w, lvl)
if err != nil {
return err
}
UseLogger(l)
return nil
}
// LogClosure is a closure that can be printed with %v to be used to
// generate expensive-to-create data for a detailed log level and avoid doing
// the work if the data isn't printed.
type logClosure func() string
func (c logClosure) String() string {
return c()
}
func newLogClosure(c func() string) logClosure {
return logClosure(c)
}
// directionString is a helper function that returns a string that represents
// the direction of a connection (inbound or outbound).
func directionString(inbound bool) string {
if inbound {
return "inbound"
}
return "outbound"
}
// formatLockTime returns a transaction lock time as a human-readable string.
func formatLockTime(lockTime uint32) string {
// The lock time field of a transaction is either a block height at
// which the transaction is finalized or a timestamp depending on if the
// value is before the lockTimeThreshold. When it is under the
// threshold it is a block height.
if lockTime < txscript.LockTimeThreshold {
return fmt.Sprintf("height %d", lockTime)
}
return time.Unix(int64(lockTime), 0).String()
}
// invSummary returns an inventory message as a human-readable string.
func invSummary(invList []*wire.InvVect) string {
// No inventory.
invLen := len(invList)
if invLen == 0 {
return "empty"
}
// One inventory item.
if invLen == 1 {
iv := invList[0]
switch iv.Type {
case wire.InvTypeError:
return fmt.Sprintf("error %s", iv.Hash)
case wire.InvTypeBlock:
return fmt.Sprintf("block %s", iv.Hash)
case wire.InvTypeTx:
return fmt.Sprintf("tx %s", iv.Hash)
}
return fmt.Sprintf("unknown (%d) %s", uint32(iv.Type), iv.Hash)
}
// More than one inv item.
return fmt.Sprintf("size %d", invLen)
}
// locatorSummary returns a block locator as a human-readable string.
func locatorSummary(locator []*wire.ShaHash, stopHash *wire.ShaHash) string {
if len(locator) > 0 {
return fmt.Sprintf("locator %s, stop %s", locator[0], stopHash)
}
return fmt.Sprintf("no locator, stop %s", stopHash)
}
// sanitizeString strips any characters which are even remotely dangerous, such
// as html control characters, from the passed string. It also limits it to
// the passed maximum size, which can be 0 for unlimited. When the string is
// limited, it will also add "..." to the string to indicate it was truncated.
func sanitizeString(str string, maxLength uint) string {
const safeChars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXY" +
"Z01234567890 .,;_/:?@"
// Strip any characters not in the safeChars string removed.
str = strings.Map(func(r rune) rune {
if strings.IndexRune(safeChars, r) >= 0 {
return r
}
return -1
}, str)
// Limit the string to the max allowed length.
if maxLength > 0 && uint(len(str)) > maxLength {
str = str[:maxLength]
str = str + "..."
}
return str
}
// messageSummary returns a human-readable string which summarizes a message.
// Not all messages have or need a summary. This is used for debug logging.
func messageSummary(msg wire.Message) string {
switch msg := msg.(type) {
case *wire.MsgVersion:
return fmt.Sprintf("agent %s, pver %d, block %d",
msg.UserAgent, msg.ProtocolVersion, msg.LastBlock)
case *wire.MsgVerAck:
// No summary.
case *wire.MsgGetAddr:
// No summary.
case *wire.MsgAddr:
return fmt.Sprintf("%d addr", len(msg.AddrList))
case *wire.MsgPing:
// No summary - perhaps add nonce.
case *wire.MsgPong:
// No summary - perhaps add nonce.
case *wire.MsgAlert:
// No summary.
case *wire.MsgMemPool:
// No summary.
case *wire.MsgTx:
return fmt.Sprintf("hash %s, %d inputs, %d outputs, lock %s",
msg.TxSha(), len(msg.TxIn), len(msg.TxOut),
formatLockTime(msg.LockTime))
case *wire.MsgBlock:
header := &msg.Header
return fmt.Sprintf("hash %s, ver %d, %d tx, %s", msg.BlockSha(),
header.Version, len(msg.Transactions), header.Timestamp)
case *wire.MsgInv:
return invSummary(msg.InvList)
case *wire.MsgNotFound:
return invSummary(msg.InvList)
case *wire.MsgGetData:
return invSummary(msg.InvList)
case *wire.MsgGetBlocks:
return locatorSummary(msg.BlockLocatorHashes, &msg.HashStop)
case *wire.MsgGetHeaders:
return locatorSummary(msg.BlockLocatorHashes, &msg.HashStop)
case *wire.MsgHeaders:
return fmt.Sprintf("num %d", len(msg.Headers))
case *wire.MsgReject:
// Ensure the variable length strings don't contain any
// characters which are even remotely dangerous such as HTML
// control characters, etc. Also limit them to sane length for
// logging.
rejCommand := sanitizeString(msg.Cmd, wire.CommandSize)
rejReason := sanitizeString(msg.Reason, maxRejectReasonLen)
summary := fmt.Sprintf("cmd %v, code %v, reason %v", rejCommand,
msg.Code, rejReason)
if rejCommand == wire.CmdBlock || rejCommand == wire.CmdTx {
summary += fmt.Sprintf(", hash %v", msg.Hash)
}
return summary
}
// No summary for other messages.
return ""
}