lbcd/addrmanager.go

844 lines
22 KiB
Go
Raw Normal View History

2013-08-06 23:55:22 +02:00
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"encoding/json"
2013-08-06 23:55:22 +02:00
"github.com/conformal/btcwire"
"math"
"math/rand"
2013-08-06 23:55:22 +02:00
"net"
"os"
"path/filepath"
2013-08-06 23:55:22 +02:00
"strconv"
"sync"
"time"
)
const (
// maxAddresses identifies the maximum number of addresses that the
// address manager will track.
maxAddresses = 2500
// needAddressThreshold is the number of addresses under which the
// address manager will claim to need more addresses.
needAddressThreshold = 1000
2013-08-06 23:55:22 +02:00
newAddressBufferSize = 50
// dumpAddressInterval is the interval used to dump the address
// cache to disk for future use.
dumpAddressInterval = time.Minute * 2
// triedBucketSize is the maximum number of addresses in each
// tried address bucket.
triedBucketSize = 64
// newBucketSize is the maximum number of addresses in each new address
// bucket.
newBucketSize = 64
// numMissingDays is the number of days before which we assume an
// address has vanished if we have not seen it announced in that long.
numMissingDays = 30
// numRetries is the number of tried without a single success before
// we assume an address is bad.
numRetries = 3
// maxFailures is the maximum number of failures we will accept without
// a success before considering an address bad.
maxFailures = 10
// minBadDays is the number of days since the last success before we
// will consider evicting an address.
minBadDays = 7
2013-08-06 23:55:22 +02:00
)
// updateAddress is a helper function to either update an address already known
// to the address manager, or to add the address if not already known.
func (a *AddrManager) updateAddress(netAddr, srcAddr *btcwire.NetAddress) {
2013-08-06 23:55:22 +02:00
// Protect concurrent access.
a.mtx.Lock()
defer a.mtx.Unlock()
2013-08-06 23:55:22 +02:00
ka := a.find(netAddr)
if ka != nil {
2013-08-06 23:55:22 +02:00
// Update the last seen time.
if netAddr.Timestamp.After(ka.na.Timestamp) {
ka.na.Timestamp = netAddr.Timestamp
2013-08-06 23:55:22 +02:00
}
// Update services.
ka.na.AddService(netAddr.Services)
2013-08-06 23:55:22 +02:00
log.Tracef("[AMGR] Updated address manager address %s",
NetAddressKey(netAddr))
2013-08-06 23:55:22 +02:00
return
}
// Enforce max addresses.
if len(a.addrNew) > newBucketSize {
log.Tracef("[AMGR] new bucket is full, expiring old ")
a.expireNew()
2013-08-06 23:55:22 +02:00
}
addr := NetAddressKey(netAddr)
ka = &knownAddress{na: netAddr}
// Fill in index.
a.addrIndex[addr] = ka
// Add to new bucket.
a.addrNew[addr] = ka
2013-08-06 23:55:22 +02:00
log.Tracef("[AMGR] Added new address %s for a total of %d addresses",
addr, len(a.addrNew)+a.addrTried.Len())
}
// bad returns true if the address in question has not been tried in the last
// minute and meets one of the following criteria:
// 1) It claims to be from the future
// 2) It hasn't been seen in over a month
// 3) It has failed at least three times and never succeeded
// 4) It has failed ten times in the last week
// All addresses that meet these criteria are assumed to be worthless and not
// worth keeping hold of.
func bad(ka *knownAddress) bool {
if ka.lastattempt.After(time.Now().Add(-1 * time.Minute)) {
return false
}
// From the future?
if ka.na.Timestamp.After(time.Now().Add(10 * time.Minute)) {
return true
}
// Over a month old?
if ka.na.Timestamp.After(time.Now().Add(-1 * numMissingDays * time.Hour * 24)) {
return true
}
// Never succeeded?
if ka.lastsuccess.IsZero() && ka.attempts >= numRetries {
return true
}
// Hasn't succeeded in too long?
if !ka.lastsuccess.After(time.Now().Add(-1*minBadDays*time.Hour*24)) &&
ka.attempts >= maxFailures {
return true
}
return false
}
// chance returns the selection probability for a known address. The priority
// depends upon how recent the address has been seen, how recent it was last
// attempted and how often attempts to connect to it have failed.
func chance(ka *knownAddress) float64 {
c := 1.0
now := time.Now()
var lastSeen float64 = 0.0
var lastTry float64 = 0.0
if !ka.na.Timestamp.After(now) {
var dur time.Duration
if ka.na.Timestamp.IsZero() {
// use unix epoch to match bitcoind.
dur = now.Sub(time.Unix(0, 0))
} else {
dur = now.Sub(ka.na.Timestamp)
}
lastSeen = dur.Seconds()
}
if !ka.lastattempt.After(now) {
var dur time.Duration
if ka.lastattempt.IsZero() {
// use unix epoch to match bitcoind.
dur = now.Sub(time.Unix(0, 0))
} else {
dur = now.Sub(ka.lastattempt)
}
lastTry = dur.Seconds()
}
c = 600.0 / (600.0 + lastSeen)
// Very recent attempts are less likely to be retried.
if lastTry > 60.0*10.0 {
c *= 0.01
}
// Failed attempts deprioritise.
if ka.attempts > 0 {
c /= (float64(ka.attempts) * 1.5)
}
return c
}
// expireNew makes space in the new buckets by expiring the really bad entries.
// If no bad entries are available we look at a few and remove the oldest.
func (a *AddrManager) expireNew() {
// First see if there are any entries that are so bad we can just throw
// them away. otherwise we throw away the oldest entry in the cache.
// Bitcoind here chooses four random and just throws the oldest of
// those away, but we keep track of oldest in the initial traversal and
// use that information instead
var oldest *knownAddress
for k, v := range a.addrNew {
if bad(v) {
log.Tracef("[AMGR] expiring bad address %v", k)
delete(a.addrIndex, k)
delete(a.addrNew, k)
return
}
if oldest == nil {
oldest = v
} else if !v.na.Timestamp.After(oldest.na.Timestamp) {
oldest = v
}
}
if oldest != nil {
key := NetAddressKey(oldest.na)
log.Tracef("[AMGR] expiring oldest address %v", key)
delete(a.addrIndex, key)
delete(a.addrNew, key)
}
}
// pickTried selects an address from the tried bucket to be evicted.
// We just choose the eldest.
func (a *AddrManager) pickTried() *list.Element {
var oldest *knownAddress
var oldestElem *list.Element
for e := a.addrTried.Front(); e != nil; e = e.Next() {
ka := e.Value.(*knownAddress)
if oldest == nil || oldest.na.Timestamp.After(ka.na.Timestamp) {
oldestElem = e
oldest = ka
}
}
return oldestElem
}
// knownAddress tracks information about a known network address that is used
// to determine how viable an address is.
type knownAddress struct {
na *btcwire.NetAddress
attempts int
lastattempt time.Time
lastsuccess time.Time
time time.Time
tried bool
2013-08-06 23:55:22 +02:00
}
// AddrManager provides a concurrency safe address manager for caching potential
// peers on the bitcoin network.
type AddrManager struct {
mtx sync.Mutex
rand *rand.Rand
addrIndex map[string]*knownAddress // address key to ka for all addrs.
addrNew map[string]*knownAddress
addrTried *list.List
started bool
shutdown bool
wg sync.WaitGroup
quit chan bool
}
type JsonSave struct {
AddrList []string
2013-08-06 23:55:22 +02:00
}
// addressHandler is the main handler for the address manager. It must be run
// as a goroutine.
func (a *AddrManager) addressHandler() {
dumpAddressTicker := time.NewTicker(dumpAddressInterval)
out:
for !a.shutdown {
select {
case <-dumpAddressTicker.C:
if !a.shutdown {
a.savePeers()
2013-08-06 23:55:22 +02:00
}
case <-a.quit:
a.savePeers()
2013-08-06 23:55:22 +02:00
break out
}
}
dumpAddressTicker.Stop()
a.wg.Done()
log.Trace("[AMGR] Address handler done")
}
// savePeers saves all the known addresses to a file so they can be read back
// in at next run.
func (a *AddrManager) savePeers() {
// May give some way to specify this later.
filename := "peers.json"
filePath := filepath.Join(cfg.DataDir, filename)
var toSave JsonSave
list := a.AddressCacheFlat()
toSave.AddrList = list
w, err := os.Create(filePath)
if err != nil {
log.Error("Error opening file: ", filePath, err)
}
enc := json.NewEncoder(w)
defer w.Close()
enc.Encode(&toSave)
}
// loadPeers loads the known address from the saved file. If empty, missing, or
// malformed file, just don't load anything and start fresh
func (a *AddrManager) loadPeers() {
// May give some way to specify this later.
filename := "peers.json"
filePath := filepath.Join(cfg.DataDir, filename)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
log.Debugf("%s does not exist.\n", filePath)
} else {
r, err := os.Open(filePath)
if err != nil {
log.Error("Error opening file: ", filePath, err)
return
}
defer r.Close()
var inList JsonSave
dec := json.NewDecoder(r)
err = dec.Decode(&inList)
if err != nil {
log.Error("Error reading:", filePath, err)
return
}
log.Debug("Adding ", len(inList.AddrList), " saved peers.")
if len(inList.AddrList) > 0 {
for _, ip := range inList.AddrList {
a.AddAddressByIP(ip)
}
}
}
}
2013-08-06 23:55:22 +02:00
// Start begins the core address handler which manages a pool of known
// addresses, timeouts, and interval based writes.
func (a *AddrManager) Start() {
// Already started?
if a.started {
return
}
log.Trace("[AMGR] Starting address manager")
a.wg.Add(1)
go a.addressHandler()
2013-08-06 23:55:22 +02:00
a.started = true
// Load peers we already know about from file.
a.loadPeers()
2013-08-06 23:55:22 +02:00
}
// Stop gracefully shuts down the address manager by stopping the main handler.
func (a *AddrManager) Stop() error {
if a.shutdown {
log.Warnf("[AMGR] Address manager is already in the process of " +
"shutting down")
return nil
}
log.Infof("[AMGR] Address manager shutting down")
a.savePeers()
2013-08-06 23:55:22 +02:00
a.shutdown = true
a.quit <- true
a.wg.Wait()
return nil
}
// AddAddresses adds new addresses to the address manager. It enforces a max
// number of addresses and silently ignores duplicate addresses. It is
// safe for concurrent access.
func (a *AddrManager) AddAddresses(addrs []*btcwire.NetAddress,
srcAddr *btcwire.NetAddress) {
for _, na := range addrs {
// Filter out non-routable addresses. Note that non-routable
// also includes invalid and local addresses.
if Routable(na) {
a.updateAddress(na, srcAddr)
}
}
2013-08-06 23:55:22 +02:00
}
// AddAddress adds a new address to the address manager. It enforces a max
// number of addresses and silently ignores duplicate addresses. It is
// safe for concurrent access.
func (a *AddrManager) AddAddress(addr *btcwire.NetAddress,
srcAddr *btcwire.NetAddress) {
a.AddAddresses([]*btcwire.NetAddress{addr}, srcAddr)
}
// AddAddressByIP adds an address where we are given an ip:port and not a
// btcwire.NetAddress.
func (a *AddrManager) AddAddressByIP(addrIP string) {
// Split IP and port
addr, portStr, err := net.SplitHostPort(addrIP)
if err != nil {
log.Warnf("[AMGR] AddADddressByIP given bullshit adddress"+
"(%s): %v", err)
return
}
// Put it in btcwire.Netaddress
var na btcwire.NetAddress
na.Timestamp = time.Now()
na.IP = net.ParseIP(addr)
if na.IP == nil {
log.Error("Invalid ip address:", addr)
return
}
port, err := strconv.ParseUint(portStr, 10, 0)
if err != nil {
log.Error("Invalid port: ", portStr, err)
return
}
na.Port = uint16(port)
a.AddAddress(&na, &na) // XXX use correct src address
2013-08-06 23:55:22 +02:00
}
// NeedMoreAddresses returns whether or not the address manager needs more
// addresses.
func (a *AddrManager) NeedMoreAddresses() bool {
// NumAddresses handles concurrent access for us.
2013-08-06 23:55:22 +02:00
return a.NumAddresses() < needAddressThreshold
2013-08-06 23:55:22 +02:00
}
// NumAddresses returns the number of addresses known to the address manager.
func (a *AddrManager) NumAddresses() int {
a.mtx.Lock()
defer a.mtx.Unlock()
2013-08-06 23:55:22 +02:00
return len(a.addrNew) + a.addrTried.Len()
2013-08-06 23:55:22 +02:00
}
// AddressCache returns the current address cache. It must be treated as
// read-only (but since it is a copy now, this is not as dangerous).
2013-08-06 23:55:22 +02:00
func (a *AddrManager) AddressCache() map[string]*btcwire.NetAddress {
allAddr := make(map[string]*btcwire.NetAddress)
a.mtx.Lock()
defer a.mtx.Unlock()
for k, v := range a.addrNew {
allAddr[k] = v.na
}
for e := a.addrTried.Front(); e != nil; e = e.Next() {
ka := e.Value.(*knownAddress)
allAddr[NetAddressKey(ka.na)] = ka.na
}
return allAddr
}
// AddressCacheFlat returns a flat list of strings with the current address
// cache. Just a copy, so one can do whatever they want to it.
func (a *AddrManager) AddressCacheFlat() []string {
var allAddr []string
a.mtx.Lock()
defer a.mtx.Unlock()
for k, _ := range a.addrNew {
allAddr = append(allAddr, k)
}
for e := a.addrTried.Front(); e != nil; e = e.Next() {
ka := e.Value.(*knownAddress)
allAddr = append(allAddr, NetAddressKey(ka.na))
}
return allAddr
2013-08-06 23:55:22 +02:00
}
// New returns a new bitcoin address manager.
// Use Start to begin processing asynchronous address updates.
func NewAddrManager() *AddrManager {
am := AddrManager{
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
addrIndex: make(map[string]*knownAddress),
addrNew: make(map[string]*knownAddress),
addrTried: list.New(),
quit: make(chan bool),
2013-08-06 23:55:22 +02:00
}
return &am
}
// NetAddressKey returns a string key in the form of ip:port for IPv4 addresses
// or [ip]:port for IPv6 addresses.
func NetAddressKey(na *btcwire.NetAddress) string {
port := strconv.FormatUint(uint64(na.Port), 10)
addr := net.JoinHostPort(na.IP.String(), port)
return addr
}
// GetAddress returns a single address that should be routable. It picks a
// random one from the possible addresses with preference given to ones that
// have not been used recently and should not pick 'close' addresses
// consecutively.
func (a *AddrManager) GetAddress(class string, newBias int) *knownAddress {
// Protect concurrent access.
a.mtx.Lock()
defer a.mtx.Unlock()
if newBias > 100 {
newBias = 100
}
if newBias < 0 {
newBias = 0
}
// Bias 50% for now between new and tried.
triedCorrelation := math.Sqrt(float64(a.addrTried.Len())) *
(100.0 - float64(newBias))
newCorrelation := math.Sqrt(float64(len(a.addrNew))) * float64(newBias)
if (newCorrelation+triedCorrelation)*a.rand.Float64() <
triedCorrelation {
// Tried entry.
large := 1 << 30
factor := 1.0
for {
// Pick a random entry in the list
e := a.addrTried.Front()
for i := a.rand.Int63n(int64(a.addrTried.Len())); i > 0; i-- {
e = e.Next()
}
ka := e.Value.(*knownAddress)
randval := a.rand.Intn(large)
if float64(randval) < (factor * chance(ka) * float64(large)) {
log.Tracef("[AMGR] Selected %v from tried "+
"bucket", NetAddressKey(ka.na))
return ka
}
factor *= 1.2
}
} else {
// new node.
// XXX use a closure/function to avoid repeating this.
keyList := []string{}
for key := range a.addrNew {
keyList = append(keyList, key)
}
large := 1 << 30
factor := 1.0
for {
testKey := keyList[a.rand.Int63n(int64(len(keyList)))]
ka := a.addrNew[testKey]
randval := a.rand.Intn(large)
if float64(randval) < (factor * chance(ka) * float64(large)) {
log.Tracef("[AMGR] Selected %v from new bucket",
NetAddressKey(ka.na))
return ka
}
factor *= 1.2
}
}
return nil
}
func (a *AddrManager) find(addr *btcwire.NetAddress) *knownAddress {
return a.addrIndex[NetAddressKey(addr)]
}
/*
* Connected - updates the last seen time but only every 20 minutes.
* Good - last tried = last success = last seen = now. attmempts = 0.
* - move address to tried.
* Attempted - set last tried to time. nattempts++
*/
func (a *AddrManager) Attempt(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
// find address.
// Surely address will be in tried by now?
ka := a.find(addr)
if ka == nil {
return
}
// set last tried time to now
ka.attempts++
ka.lastattempt = time.Now()
}
// Connected Marks the given address as currently connected and working at the
// current time. The address must already be known to AddrManager else it will
// be ignored.
func (a *AddrManager) Connected(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.find(addr)
if ka == nil {
return
}
// Update the time as long as it has been 20 minutes since last we did
// so.
now := time.Now()
if now.After(ka.na.Timestamp.Add(time.Minute * 20)) {
ka.na.Timestamp = time.Now()
}
}
// Good marks the given address as good. To be called after a successful
// connection and version exchange. If the address is unknown to the addresss
// manager it will be ignored.
func (a *AddrManager) Good(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.find(addr)
if ka == nil {
return
}
now := time.Now()
ka.lastsuccess = now
ka.lastattempt = now
ka.na.Timestamp = now
ka.attempts = 0
// move to tried set, optionally evicting other addresses if neeed.
if ka.tried {
return
}
// ok, need to move it to tried.
// remove from new buckets.
addrKey := NetAddressKey(addr)
delete(a.addrNew, addrKey)
// is tried full? or is it ok?
if a.addrTried.Len() < triedBucketSize {
a.addrTried.PushBack(ka)
return
}
// No room, we have to evict something else.
// pick another one to throw out
entry := a.pickTried()
rmka := entry.Value.(*knownAddress)
rmkey := NetAddressKey(rmka.na)
// replace with ka.
entry.Value = ka
rmka.tried = false
log.Tracef("[AMGR] replacing %s with %s in tried", rmkey, addrKey)
// We know there is space for it since we just moved out of new.
// TODO(oga) when we move to multiple buckets then we will need to
// check for size and consider putting it elsewhere.
a.addrNew[rmkey] = rmka
}
// RFC1918: IPv4 Private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
var rfc1918ten = net.IPNet{IP: net.ParseIP("10.0.0.0"),
Mask: net.CIDRMask(8, 32)}
var rfc1918oneninetwo = net.IPNet{IP: net.ParseIP("192.168.0.0"),
Mask: net.CIDRMask(16, 32)}
var rfc1918oneseventwo = net.IPNet{IP: net.ParseIP("172.16.0.0"),
Mask: net.CIDRMask(12, 32)}
func RFC1918(na *btcwire.NetAddress) bool {
return rfc1918ten.Contains(na.IP) ||
rfc1918oneninetwo.Contains(na.IP) ||
rfc1918oneseventwo.Contains(na.IP)
}
// RFC3849 IPv6 Documentation address (2001:0DB8::/32)
var rfc3849 = net.IPNet{IP: net.ParseIP("2001:0DB8::"),
Mask: net.CIDRMask(32, 128)}
func RFC3849(na *btcwire.NetAddress) bool {
return rfc3849.Contains(na.IP)
}
// RFC3927 IPv4 Autoconfig (169.254.0.0/16)
var rfc3927 = net.IPNet{IP: net.ParseIP("169.254.0.0"), Mask: net.CIDRMask(16, 32)}
func RFC3927(na *btcwire.NetAddress) bool {
return rfc3927.Contains(na.IP)
}
// RFC3964 IPv6 6to4 (2002::/16)
var rfc3964 = net.IPNet{IP: net.ParseIP("2002::"),
Mask: net.CIDRMask(16, 128)}
func RFC3964(na *btcwire.NetAddress) bool {
return rfc3964.Contains(na.IP)
}
// RFC4193 IPv6 unique local (FC00::/15)
var rfc4193 = net.IPNet{IP: net.ParseIP("FC00::"),
Mask: net.CIDRMask(15, 128)}
func RFC4193(na *btcwire.NetAddress) bool {
return rfc4193.Contains(na.IP)
}
// RFC4380 IPv6 Teredo tunneling (2001::/32)
var rfc4380 = net.IPNet{IP: net.ParseIP("2001::"),
Mask: net.CIDRMask(32, 128)}
func RFC4380(na *btcwire.NetAddress) bool {
return rfc4380.Contains(na.IP)
}
// RFC4843 IPv6 ORCHID: (2001:10::/28)
var rfc4843 = net.IPNet{IP: net.ParseIP("2001;10::"),
Mask: net.CIDRMask(28, 128)}
func RFC4843(na *btcwire.NetAddress) bool {
return rfc4843.Contains(na.IP)
}
// RFC4862 IPv6 Autoconfig (FE80::/64)
var rfc4862 = net.IPNet{IP: net.ParseIP("FE80::"),
Mask: net.CIDRMask(64, 128)}
func RFC4862(na *btcwire.NetAddress) bool {
return rfc4862.Contains(na.IP)
}
// RFC6052: IPv6 well known prefix (64:FF9B::/96)
var rfc6052 = net.IPNet{IP: net.ParseIP("64::FF9B::"),
Mask: net.CIDRMask(96, 128)}
func RFC6052(na *btcwire.NetAddress) bool {
return rfc6052.Contains(na.IP)
}
// RFC6145: IPv6 IPv4 translated address ::FFFF:0:0:0/96
var rfc6145 = net.IPNet{IP: net.ParseIP("::FFFF:0:0:0"),
Mask: net.CIDRMask(96, 128)}
func RFC6145(na *btcwire.NetAddress) bool {
return rfc6145.Contains(na.IP)
}
func Tor(na *btcwire.NetAddress) bool {
// bitcoind encodes a .onion address as a 16 byte number by decoding the
// address prior to the .onion (i.e. the key hash) base32 into a ten
// byte number. it then stores the first 6 bytes of the address as
// 0xfD, 0x87, 0xD8, 0x7e, 0xeb, 0x43
// making the format
// { magic 6 bytes, 10 bytes base32 decode of key hash }
// Since we use btcwire.NetAddress to represent and address we may
// well have to emulate this.
// XXX fillmein
return false
}
var zero4 = net.IPNet{IP: net.ParseIP("0.0.0.0"),
Mask: net.CIDRMask(8, 32)}
func Local(na *btcwire.NetAddress) bool {
return na.IP.IsLoopback() || zero4.Contains(na.IP)
}
// Valid returns true if an address is not one of the invalid formats.
// For IPv4 these are either a 0 or all bits set address. For IPv6 a zero
// address or one that matches the RFC3849 documentation address format.
func Valid(na *btcwire.NetAddress) bool {
// IsUnspecified returns if address is 0, so only all bits set, and
// RFC3849 need to be explicitly checked. bitcoind here also checks for
// invalid protocol addresses from earlier versions of bitcoind (before
// 0.2.9), however, since protocol versions before 70001 are
// disconnected by the bitcoin network now we have elided it.
return !(na.IP.IsUnspecified() || RFC3849(na) ||
na.IP.Equal(net.IPv4bcast))
}
// Routable returns whether a netaddress is routable on the public internet or
// not. This is true as long as the address is valid and is not in any reserved
// ranges.
func Routable(na *btcwire.NetAddress) bool {
return Valid(na) && !(RFC1918(na) || RFC3927(na) || RFC4862(na) ||
RFC4193(na) || Tor(na) || RFC4843(na) || Local(na))
}
// GroupKey returns a string representing the network group an address
// is part of.
// This is the /16 for IPv6, the /32 (/36 for he.net) for IPv6, the string
// "local" for a local address and the string "unroutable for an unroutable
// address.
func GroupKey(na *btcwire.NetAddress) string {
if Local(na) {
return "local"
}
if !Routable(na) {
return "unroutable"
}
if ipv4 := na.IP.To4(); ipv4 != nil {
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC6145(na) || RFC6052(na) {
// last four bytes are the ip address
ip := net.IP(na.IP[12:16])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC3964(na) {
ip := net.IP(na.IP[2:7])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC4380(na) {
// teredo tunnels have the last 4 bytes as the v4 address XOR
// 0xff.
ip := net.IP(make([]byte, 4))
for i, byte := range na.IP[12:16] {
ip[i] = byte ^ 0xff
}
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
// XXX tor?
if Tor(na) {
panic("oga should have implemented me")
}
// OK, so now we know ourselves to be a IPv6 address.
// bitcoind uses /32 for everything but what it calls he.net, which is
// it uses /36 for. he.net is actualy 2001:470::/32, whereas bitcoind
// counts it as 2011:470::/32.
bits := 32
heNet := &net.IPNet{IP: net.ParseIP("2011:470::"),
Mask: net.CIDRMask(32, 128)}
if heNet.Contains(na.IP) {
bits = 36
}
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(bits, 128)}).String()
}