lbcd/database/memdb/memdb.go

745 lines
23 KiB
Go
Raw Normal View History

// Copyright (c) 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package memdb
import (
"errors"
"fmt"
2014-07-03 02:47:24 +02:00
"math"
"sync"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// Errors that the various database functions may return.
var (
ErrDbClosed = errors.New("database is closed")
)
var (
zeroHash = wire.ShaHash{}
// The following two hashes are ones that must be specially handled.
// See the comments where they're used for more details.
dupTxHash91842 = newShaHashFromStr("d5d27987d2a3dfc724e359870c6644b40e497bdc0589a033220fe15429d88599")
dupTxHash91880 = newShaHashFromStr("e3bf3d07d4b0375638d5f1db5255fe07ba2c4cb067cd81b84ee974b6585fb468")
)
// tTxInsertData holds information about the location and spent status of
// a transaction.
type tTxInsertData struct {
blockHeight int64
offset int
spentBuf []bool
}
// newShaHashFromStr converts the passed big-endian hex string into a
// wire.ShaHash. It only differs from the one available in wire in that it
// ignores the error since it will only (and must only) be called with
// hard-coded, and therefore known good, hashes.
func newShaHashFromStr(hexStr string) *wire.ShaHash {
sha, _ := wire.NewShaHashFromStr(hexStr)
return sha
}
// isCoinbaseInput returns whether or not the passed transaction input is a
// coinbase input. A coinbase is a special transaction created by miners that
// has no inputs. This is represented in the block chain by a transaction with
// a single input that has a previous output transaction index set to the
// maximum value along with a zero hash.
func isCoinbaseInput(txIn *wire.TxIn) bool {
prevOut := &txIn.PreviousOutPoint
if prevOut.Index == math.MaxUint32 && prevOut.Hash.IsEqual(&zeroHash) {
return true
}
return false
}
// isFullySpent returns whether or not a transaction represented by the passed
// transaction insert data is fully spent. A fully spent transaction is one
// where all outputs are spent.
func isFullySpent(txD *tTxInsertData) bool {
for _, spent := range txD.spentBuf {
if !spent {
return false
}
}
return true
}
// MemDb is a concrete implementation of the database.Db interface which provides
// a memory-only database. Since it is memory-only, it is obviously not
// persistent and is mostly only useful for testing purposes.
type MemDb struct {
// Embed a mutex for safe concurrent access.
sync.Mutex
// blocks holds all of the bitcoin blocks that will be in the memory
// database.
blocks []*wire.MsgBlock
// blocksBySha keeps track of block heights by hash. The height can
// be used as an index into the blocks slice.
blocksBySha map[wire.ShaHash]int64
// txns holds information about transactions such as which their
// block height and spent status of all their outputs.
txns map[wire.ShaHash][]*tTxInsertData
// closed indicates whether or not the database has been closed and is
// therefore invalidated.
closed bool
}
// removeTx removes the passed transaction including unspending it.
func (db *MemDb) removeTx(msgTx *wire.MsgTx, txHash *wire.ShaHash) {
// Undo all of the spends for the transaction.
for _, txIn := range msgTx.TxIn {
if isCoinbaseInput(txIn) {
continue
}
prevOut := &txIn.PreviousOutPoint
originTxns, exists := db.txns[prevOut.Hash]
if !exists {
log.Warnf("Unable to find input transaction %s to "+
"unspend %s index %d", prevOut.Hash, txHash,
prevOut.Index)
continue
}
originTxD := originTxns[len(originTxns)-1]
originTxD.spentBuf[prevOut.Index] = false
}
// Remove the info for the most recent version of the transaction.
txns := db.txns[*txHash]
lastIndex := len(txns) - 1
txns[lastIndex] = nil
txns = txns[:lastIndex]
db.txns[*txHash] = txns
// Remove the info entry from the map altogether if there not any older
// versions of the transaction.
if len(txns) == 0 {
delete(db.txns, *txHash)
}
}
// Close cleanly shuts down database. This is part of the database.Db interface
// implementation.
//
// All data is purged upon close with this implementation since it is a
// memory-only database.
func (db *MemDb) Close() error {
db.Lock()
defer db.Unlock()
if db.closed {
return ErrDbClosed
}
db.blocks = nil
db.blocksBySha = nil
db.txns = nil
db.closed = true
return nil
}
// DropAfterBlockBySha removes any blocks from the database after the given
// block. This is different than a simple truncate since the spend information
// for each block must also be unwound. This is part of the database.Db interface
// implementation.
func (db *MemDb) DropAfterBlockBySha(sha *wire.ShaHash) error {
db.Lock()
defer db.Unlock()
if db.closed {
return ErrDbClosed
}
// Begin by attempting to find the height associated with the passed
// hash.
height, exists := db.blocksBySha[*sha]
if !exists {
return fmt.Errorf("block %v does not exist in the database",
sha)
}
// The spend information has to be undone in reverse order, so loop
// backwards from the last block through the block just after the passed
// block. While doing this unspend all transactions in each block and
// remove the block.
endHeight := int64(len(db.blocks) - 1)
for i := endHeight; i > height; i-- {
// Unspend and remove each transaction in reverse order because
// later transactions in a block can reference earlier ones.
transactions := db.blocks[i].Transactions
for j := len(transactions) - 1; j >= 0; j-- {
tx := transactions[j]
txHash := tx.TxSha()
db.removeTx(tx, &txHash)
}
db.blocks[i] = nil
db.blocks = db.blocks[:i]
}
return nil
}
// ExistsSha returns whether or not the given block hash is present in the
// database. This is part of the database.Db interface implementation.
func (db *MemDb) ExistsSha(sha *wire.ShaHash) (bool, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return false, ErrDbClosed
}
if _, exists := db.blocksBySha[*sha]; exists {
return true, nil
}
return false, nil
}
// FetchBlockBySha returns a btcutil.Block. The implementation may cache the
// underlying data if desired. This is part of the database.Db interface
// implementation.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
func (db *MemDb) FetchBlockBySha(sha *wire.ShaHash) (*btcutil.Block, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, ErrDbClosed
}
if blockHeight, exists := db.blocksBySha[*sha]; exists {
block := btcutil.NewBlock(db.blocks[int(blockHeight)])
block.SetHeight(blockHeight)
return block, nil
}
return nil, fmt.Errorf("block %v is not in database", sha)
}
// FetchBlockHeightBySha returns the block height for the given hash. This is
// part of the database.Db interface implementation.
func (db *MemDb) FetchBlockHeightBySha(sha *wire.ShaHash) (int64, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return 0, ErrDbClosed
}
if blockHeight, exists := db.blocksBySha[*sha]; exists {
return blockHeight, nil
}
return 0, fmt.Errorf("block %v is not in database", sha)
}
// FetchBlockHeaderBySha returns a wire.BlockHeader for the given sha. The
// implementation may cache the underlying data if desired. This is part of the
// database.Db interface implementation.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
func (db *MemDb) FetchBlockHeaderBySha(sha *wire.ShaHash) (*wire.BlockHeader, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, ErrDbClosed
}
if blockHeight, exists := db.blocksBySha[*sha]; exists {
return &db.blocks[int(blockHeight)].Header, nil
}
return nil, fmt.Errorf("block header %v is not in database", sha)
}
// FetchBlockShaByHeight returns a block hash based on its height in the block
// chain. This is part of the database.Db interface implementation.
func (db *MemDb) FetchBlockShaByHeight(height int64) (*wire.ShaHash, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, ErrDbClosed
}
numBlocks := int64(len(db.blocks))
if height < 0 || height > numBlocks-1 {
return nil, fmt.Errorf("unable to fetch block height %d since "+
"it is not within the valid range (%d-%d)", height, 0,
numBlocks-1)
}
msgBlock := db.blocks[height]
blockHash := msgBlock.BlockSha()
return &blockHash, nil
}
// FetchHeightRange looks up a range of blocks by the start and ending heights.
// Fetch is inclusive of the start height and exclusive of the ending height.
// To fetch all hashes from the start height until no more are present, use the
// special id `AllShas'. This is part of the database.Db interface implementation.
func (db *MemDb) FetchHeightRange(startHeight, endHeight int64) ([]wire.ShaHash, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, ErrDbClosed
}
// When the user passes the special AllShas id, adjust the end height
// accordingly.
if endHeight == database.AllShas {
endHeight = int64(len(db.blocks))
}
// Ensure requested heights are sane.
if startHeight < 0 {
return nil, fmt.Errorf("start height of fetch range must not "+
"be less than zero - got %d", startHeight)
}
if endHeight < startHeight {
return nil, fmt.Errorf("end height of fetch range must not "+
"be less than the start height - got start %d, end %d",
startHeight, endHeight)
}
// Fetch as many as are availalbe within the specified range.
lastBlockIndex := int64(len(db.blocks) - 1)
hashList := make([]wire.ShaHash, 0, endHeight-startHeight)
for i := startHeight; i < endHeight; i++ {
if i > lastBlockIndex {
break
}
msgBlock := db.blocks[i]
blockHash := msgBlock.BlockSha()
hashList = append(hashList, blockHash)
}
return hashList, nil
}
// ExistsTxSha returns whether or not the given transaction hash is present in
// the database and is not fully spent. This is part of the database.Db interface
// implementation.
func (db *MemDb) ExistsTxSha(sha *wire.ShaHash) (bool, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return false, ErrDbClosed
}
if txns, exists := db.txns[*sha]; exists {
return !isFullySpent(txns[len(txns)-1]), nil
}
return false, nil
}
// FetchTxBySha returns some data for the given transaction hash. The
// implementation may cache the underlying data if desired. This is part of the
// database.Db interface implementation.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
func (db *MemDb) FetchTxBySha(txHash *wire.ShaHash) ([]*database.TxListReply, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, ErrDbClosed
}
txns, exists := db.txns[*txHash]
if !exists {
log.Warnf("FetchTxBySha: requested hash of %s does not exist",
txHash)
return nil, database.ErrTxShaMissing
}
txHashCopy := *txHash
replyList := make([]*database.TxListReply, len(txns))
for i, txD := range txns {
msgBlock := db.blocks[txD.blockHeight]
blockSha := msgBlock.BlockSha()
spentBuf := make([]bool, len(txD.spentBuf))
copy(spentBuf, txD.spentBuf)
reply := database.TxListReply{
Sha: &txHashCopy,
Tx: msgBlock.Transactions[txD.offset],
BlkSha: &blockSha,
Height: txD.blockHeight,
TxSpent: spentBuf,
Err: nil,
}
replyList[i] = &reply
}
return replyList, nil
}
// fetchTxByShaList fetches transactions and information about them given an
// array of transaction hashes. The result is a slice of of TxListReply objects
// which contain the transaction and information about it such as what block and
// block height it's contained in and which outputs are spent.
//
// The includeSpent flag indicates whether or not information about transactions
// which are fully spent should be returned. When the flag is not set, the
// corresponding entry in the TxListReply slice for fully spent transactions
// will indicate the transaction does not exist.
//
// This function must be called with the db lock held.
func (db *MemDb) fetchTxByShaList(txShaList []*wire.ShaHash, includeSpent bool) []*database.TxListReply {
replyList := make([]*database.TxListReply, 0, len(txShaList))
for i, hash := range txShaList {
// Every requested entry needs a response, so start with nothing
// more than a response with the requested hash marked missing.
// The reply will be updated below with the appropriate
// information if the transaction exists.
reply := database.TxListReply{
Sha: txShaList[i],
Err: database.ErrTxShaMissing,
}
replyList = append(replyList, &reply)
if db.closed {
reply.Err = ErrDbClosed
continue
}
if txns, exists := db.txns[*hash]; exists {
// A given transaction may have duplicates so long as the
// previous one is fully spent. We are only interested
// in the most recent version of the transaction for
// this function. The FetchTxBySha function can be
// used to get all versions of a transaction.
txD := txns[len(txns)-1]
if !includeSpent && isFullySpent(txD) {
continue
}
// Look up the referenced block and get its hash. Set
// the reply error appropriately and go to the next
// requested transaction if anything goes wrong.
msgBlock := db.blocks[txD.blockHeight]
blockSha := msgBlock.BlockSha()
// Make a copy of the spent buf to return so the caller
// can't accidentally modify it.
spentBuf := make([]bool, len(txD.spentBuf))
copy(spentBuf, txD.spentBuf)
// Populate the reply.
reply.Tx = msgBlock.Transactions[txD.offset]
reply.BlkSha = &blockSha
reply.Height = txD.blockHeight
reply.TxSpent = spentBuf
reply.Err = nil
}
}
return replyList
}
// FetchTxByShaList returns a TxListReply given an array of transaction hashes.
// The implementation may cache the underlying data if desired. This is part of
// the database.Db interface implementation.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
// FetchTxByShaList returns a TxListReply given an array of transaction
// hashes. This function differs from FetchUnSpentTxByShaList in that it
// returns the most recent version of fully spent transactions. Due to the
// increased number of transaction fetches, this function is typically more
// expensive than the unspent counterpart, however the specific performance
// details depend on the concrete implementation. The implementation may cache
// the underlying data if desired. This is part of the database.Db interface
// implementation.
//
// To fetch all versions of a specific transaction, call FetchTxBySha.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
func (db *MemDb) FetchTxByShaList(txShaList []*wire.ShaHash) []*database.TxListReply {
db.Lock()
defer db.Unlock()
return db.fetchTxByShaList(txShaList, true)
}
// FetchUnSpentTxByShaList returns a TxListReply given an array of transaction
// hashes. Any transactions which are fully spent will indicate they do not
// exist by setting the Err field to TxShaMissing. The implementation may cache
// the underlying data if desired. This is part of the database.Db interface
// implementation.
//
// To obtain results which do contain the most recent version of a fully spent
// transactions, call FetchTxByShaList. To fetch all versions of a specific
// transaction, call FetchTxBySha.
//
// This implementation does not use any additional cache since the entire
// database is already in memory.
func (db *MemDb) FetchUnSpentTxByShaList(txShaList []*wire.ShaHash) []*database.TxListReply {
db.Lock()
defer db.Unlock()
return db.fetchTxByShaList(txShaList, false)
}
// InsertBlock inserts raw block and transaction data from a block into the
// database. The first block inserted into the database will be treated as the
// genesis block. Every subsequent block insert requires the referenced parent
// block to already exist. This is part of the database.Db interface
// implementation.
func (db *MemDb) InsertBlock(block *btcutil.Block) (int64, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return 0, ErrDbClosed
}
// Reject the insert if the previously reference block does not exist
// except in the case there are no blocks inserted yet where the first
// inserted block is assumed to be a genesis block.
msgBlock := block.MsgBlock()
if _, exists := db.blocksBySha[msgBlock.Header.PrevBlock]; !exists {
if len(db.blocks) > 0 {
return 0, database.ErrPrevShaMissing
}
}
// Build a map of in-flight transactions because some of the inputs in
// this block could be referencing other transactions earlier in this
// block which are not yet in the chain.
txInFlight := map[wire.ShaHash]int{}
transactions := block.Transactions()
for i, tx := range transactions {
txInFlight[*tx.Sha()] = i
}
// Loop through all transactions and inputs to ensure there are no error
// conditions that would prevent them from be inserted into the db.
// Although these checks could could be done in the loop below, checking
// for error conditions up front means the code below doesn't have to
// deal with rollback on errors.
newHeight := int64(len(db.blocks))
for i, tx := range transactions {
// Two old blocks contain duplicate transactions due to being
// mined by faulty miners and accepted by the origin Satoshi
// client. Rules have since been added to the ensure this
// problem can no longer happen, but the two duplicate
// transactions which were originally accepted are forever in
// the block chain history and must be dealth with specially.
// http://blockexplorer.com/b/91842
// http://blockexplorer.com/b/91880
if newHeight == 91842 && tx.Sha().IsEqual(dupTxHash91842) {
continue
}
if newHeight == 91880 && tx.Sha().IsEqual(dupTxHash91880) {
continue
}
for _, txIn := range tx.MsgTx().TxIn {
if isCoinbaseInput(txIn) {
continue
}
// It is acceptable for a transaction input to reference
// the output of another transaction in this block only
// if the referenced transaction comes before the
// current one in this block.
prevOut := &txIn.PreviousOutPoint
if inFlightIndex, ok := txInFlight[prevOut.Hash]; ok {
if i <= inFlightIndex {
log.Warnf("InsertBlock: requested hash "+
" of %s does not exist in-flight",
tx.Sha())
return 0, database.ErrTxShaMissing
}
} else {
originTxns, exists := db.txns[prevOut.Hash]
if !exists {
log.Warnf("InsertBlock: requested hash "+
"of %s by %s does not exist",
prevOut.Hash, tx.Sha())
return 0, database.ErrTxShaMissing
}
originTxD := originTxns[len(originTxns)-1]
if prevOut.Index > uint32(len(originTxD.spentBuf)) {
log.Warnf("InsertBlock: requested hash "+
"of %s with index %d does not "+
"exist", tx.Sha(), prevOut.Index)
return 0, database.ErrTxShaMissing
}
}
}
// Prevent duplicate transactions in the same block.
if inFlightIndex, exists := txInFlight[*tx.Sha()]; exists &&
inFlightIndex < i {
log.Warnf("Block contains duplicate transaction %s",
tx.Sha())
return 0, database.ErrDuplicateSha
}
// Prevent duplicate transactions unless the old one is fully
// spent.
if txns, exists := db.txns[*tx.Sha()]; exists {
txD := txns[len(txns)-1]
if !isFullySpent(txD) {
log.Warnf("Attempt to insert duplicate "+
"transaction %s", tx.Sha())
return 0, database.ErrDuplicateSha
}
}
}
db.blocks = append(db.blocks, msgBlock)
db.blocksBySha[*block.Sha()] = newHeight
// Insert information about eacj transaction and spend all of the
// outputs referenced by the inputs to the transactions.
for i, tx := range block.Transactions() {
// Insert the transaction data.
txD := tTxInsertData{
blockHeight: newHeight,
offset: i,
spentBuf: make([]bool, len(tx.MsgTx().TxOut)),
}
db.txns[*tx.Sha()] = append(db.txns[*tx.Sha()], &txD)
// Spend all of the inputs.
for _, txIn := range tx.MsgTx().TxIn {
// Coinbase transaction has no inputs.
if isCoinbaseInput(txIn) {
continue
}
// Already checked for existing and valid ranges above.
prevOut := &txIn.PreviousOutPoint
originTxns := db.txns[prevOut.Hash]
originTxD := originTxns[len(originTxns)-1]
originTxD.spentBuf[prevOut.Index] = true
}
}
return newHeight, nil
}
// NewestSha returns the hash and block height of the most recent (end) block of
// the block chain. It will return the zero hash, -1 for the block height, and
// no error (nil) if there are not any blocks in the database yet. This is part
// of the database.Db interface implementation.
func (db *MemDb) NewestSha() (*wire.ShaHash, int64, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return nil, 0, ErrDbClosed
}
// When the database has not had a genesis block inserted yet, return
// values specified by interface contract.
numBlocks := len(db.blocks)
if numBlocks == 0 {
return &zeroHash, -1, nil
}
blockSha := db.blocks[numBlocks-1].BlockSha()
return &blockSha, int64(numBlocks - 1), nil
}
// FetchAddrIndexTip isn't currently implemented. This is a part of the
// database.Db interface implementation.
func (db *MemDb) FetchAddrIndexTip() (*wire.ShaHash, int64, error) {
return nil, 0, database.ErrNotImplemented
}
// UpdateAddrIndexForBlock isn't currently implemented. This is a part of the
// database.Db interface implementation.
func (db *MemDb) UpdateAddrIndexForBlock(*wire.ShaHash, int64,
database.BlockAddrIndex) error {
return database.ErrNotImplemented
}
// FetchTxsForAddr isn't currently implemented. This is a part of the database.Db
// interface implementation.
func (db *MemDb) FetchTxsForAddr(btcutil.Address, int, int) ([]*database.TxListReply, error) {
return nil, database.ErrNotImplemented
}
// DeleteAddrIndex isn't currently implemented. This is a part of the database.Db
// interface implementation.
func (db *MemDb) DeleteAddrIndex() error {
return database.ErrNotImplemented
}
// RollbackClose discards the recent database changes to the previously saved
// data at last Sync and closes the database. This is part of the database.Db
// interface implementation.
//
// The database is completely purged on close with this implementation since the
// entire database is only in memory. As a result, this function behaves no
// differently than Close.
func (db *MemDb) RollbackClose() error {
// Rollback doesn't apply to a memory database, so just call Close.
// Close handles the mutex locks.
return db.Close()
}
// Sync verifies that the database is coherent on disk and no outstanding
// transactions are in flight. This is part of the database.Db interface
// implementation.
//
// This implementation does not write any data to disk, so this function only
// grabs a lock to ensure it doesn't return until other operations are complete.
func (db *MemDb) Sync() error {
db.Lock()
defer db.Unlock()
if db.closed {
return ErrDbClosed
}
// There is nothing extra to do to sync the memory database. However,
// the lock is still grabbed to ensure the function does not return
// until other operations are complete.
return nil
}
// newMemDb returns a new memory-only database ready for block inserts.
func newMemDb() *MemDb {
db := MemDb{
blocks: make([]*wire.MsgBlock, 0, 200000),
blocksBySha: make(map[wire.ShaHash]int64),
txns: make(map[wire.ShaHash][]*tTxInsertData),
}
return &db
}