Makes signing deterministic according to RFC6979 and BIP62. Closes #358.

This commit is contained in:
Oleg Andreev 2015-04-02 09:57:52 +02:00
parent 1bf564d963
commit 122031bee3
5 changed files with 245 additions and 12 deletions

View file

@ -34,16 +34,14 @@ func Example_signMessage() {
} }
// Serialize and display the signature. // Serialize and display the signature.
// fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// NOTE: This is commented out for the example since the signature
// produced uses random numbers and therefore will always be different.
//fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key. // Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey) verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified) fmt.Printf("Signature Verified? %v\n", verified)
// Output: // Output:
// Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d
// Signature Verified? true // Signature Verified? true
} }
@ -68,6 +66,7 @@ func Example_verifySignature() {
sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" + sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" +
"8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" + "8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" +
"1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479") "1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479")
if err != nil { if err != nil {
fmt.Println(err) fmt.Println(err)
return return

View file

@ -69,3 +69,8 @@ func (curve *KoblitzCurve) TstDoubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
func NewFieldVal() *fieldVal { func NewFieldVal() *fieldVal {
return new(fieldVal) return new(fieldVal)
} }
// TstNonceRFC6979 makes the nonceRFC6979 function available to the test package.
func TstNonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
return nonceRFC6979(privkey, hash)
}

View file

@ -53,14 +53,12 @@ func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
return (*ecdsa.PrivateKey)(p) return (*ecdsa.PrivateKey)(p)
} }
// Sign wraps ecdsa.Sign to sign the provided hash (which should be the result // Sign generates an ECDSA signature for the provided hash (which should be the result
// of hashing a larger message) using the private key. // of hashing a larger message) using the private key. Produced signature
// is deterministic (same message and same key yield the same signature) and canonical
// in accordance with RFC6979 and BIP0062.
func (p *PrivateKey) Sign(hash []byte) (*Signature, error) { func (p *PrivateKey) Sign(hash []byte) (*Signature, error) {
r, s, err := ecdsa.Sign(rand.Reader, p.ToECDSA(), hash) return signRFC6979(p, hash)
if err != nil {
return nil, err
}
return &Signature{R: r, S: s}, nil
} }
// PrivKeyBytesLen defines the length in bytes of a serialized private key. // PrivKeyBytesLen defines the length in bytes of a serialized private key.

View file

@ -5,11 +5,16 @@
package btcec package btcec
import ( import (
"bytes"
"crypto/ecdsa" "crypto/ecdsa"
"crypto/elliptic" "crypto/elliptic"
"crypto/hmac"
"errors" "errors"
"fmt" "fmt"
"hash"
"math/big" "math/big"
"github.com/btcsuite/fastsha256"
) )
// Errors returned by canonicalPadding. // Errors returned by canonicalPadding.
@ -24,10 +29,17 @@ type Signature struct {
S *big.Int S *big.Int
} }
// curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
var ( var (
// Curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
order = new(big.Int).Set(S256().N) order = new(big.Int).Set(S256().N)
halforder = new(big.Int).Rsh(order, 1) halforder = new(big.Int).Rsh(order, 1)
// Used in RFC6979 implementation when testing the nonce for correctness
one = big.NewInt(1)
// oneInitializer is used to fill a byte slice with byte 0x01. It is provided
// here to avoid the need to create it multiple times.
oneInitializer = []byte{0x01}
) )
// Serialize returns the ECDSA signature in the more strict DER format. Note // Serialize returns the ECDSA signature in the more strict DER format. Note
@ -396,3 +408,125 @@ func RecoverCompact(curve *KoblitzCurve, signature,
return key, ((signature[0] - 27) & 4) == 4, nil return key, ((signature[0] - 27) & 4) == 4, nil
} }
// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62.
func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
privkey := privateKey.ToECDSA()
N := order
k := nonceRFC6979(privkey.D, hash)
inv := new(big.Int).ModInverse(k, N)
r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
if r.Cmp(N) == 1 {
r.Sub(r, N)
}
if r.Sign() == 0 {
return nil, errors.New("calculated R is zero")
}
e := hashToInt(hash, privkey.Curve)
s := new(big.Int).Mul(privkey.D, r)
s.Add(s, e)
s.Mul(s, inv)
s.Mod(s, N)
if s.Cmp(halforder) == 1 {
s.Sub(N, s)
}
if s.Sign() == 0 {
return nil, errors.New("calculated S is zero")
}
return &Signature{R: r, S: s}, nil
}
// nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979.
// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm.
func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
curve := S256()
q := curve.Params().N
x := privkey
alg := fastsha256.New
qlen := q.BitLen()
holen := alg().Size()
rolen := (qlen + 7) >> 3
bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
// Step B
v := bytes.Repeat(oneInitializer, holen)
// Step C (Go zeroes the all allocated memory)
k := make([]byte, holen)
// Step D
k = mac(alg, k, append(append(v, 0x00), bx...))
// Step E
v = mac(alg, k, v)
// Step F
k = mac(alg, k, append(append(v, 0x01), bx...))
// Step G
v = mac(alg, k, v)
// Step H
for {
// Step H1
var t []byte
// Step H2
for len(t)*8 < qlen {
v = mac(alg, k, v)
t = append(t, v...)
}
// Step H3
secret := hashToInt(t, curve)
if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
return secret
}
k = mac(alg, k, append(v, 0x00))
v = mac(alg, k, v)
}
}
// mac returns an HMAC of the given key and message.
func mac(alg func() hash.Hash, k, m []byte) []byte {
h := hmac.New(alg, k)
h.Write(m)
return h.Sum(nil)
}
// https://tools.ietf.org/html/rfc6979#section-2.3.3
func int2octets(v *big.Int, rolen int) []byte {
out := v.Bytes()
// left pad with zeros if it's too short
if len(out) < rolen {
out2 := make([]byte, rolen)
copy(out2[rolen-len(out):], out)
return out2
}
// drop most significant bytes if it's too long
if len(out) > rolen {
out2 := make([]byte, rolen)
copy(out2, out[len(out)-rolen:])
return out2
}
return out
}
// https://tools.ietf.org/html/rfc6979#section-2.3.4
func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
z1 := hashToInt(in, curve)
z2 := new(big.Int).Sub(z1, curve.Params().N)
if z2.Sign() < 0 {
return int2octets(z1, rolen)
}
return int2octets(z2, rolen)
}

View file

@ -7,11 +7,13 @@ package btcec_test
import ( import (
"bytes" "bytes"
"crypto/rand" "crypto/rand"
"encoding/hex"
"fmt" "fmt"
"math/big" "math/big"
"testing" "testing"
"github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/fastsha256"
) )
type signatureTest struct { type signatureTest struct {
@ -21,6 +23,19 @@ type signatureTest struct {
isValid bool isValid bool
} }
// decodeHex decodes the passed hex string and returns the resulting bytes. It
// panics if an error occurs. This is only used in the tests as a helper since
// the only way it can fail is if there is an error in the test source code.
func decodeHex(hexStr string) []byte {
b, err := hex.DecodeString(hexStr)
if err != nil {
panic("invalid hex string in test source: err " + err.Error() +
", hex: " + hexStr)
}
return b
}
var signatureTests = []signatureTest{ var signatureTests = []signatureTest{
// signatures from bitcoin blockchain tx // signatures from bitcoin blockchain tx
// 0437cd7f8525ceed2324359c2d0ba26006d92d85 // 0437cd7f8525ceed2324359c2d0ba26006d92d85
@ -491,3 +506,85 @@ func TestSignCompact(t *testing.T) {
testSignCompact(t, name, btcec.S256(), data, compressed) testSignCompact(t, name, btcec.S256(), data, compressed)
} }
} }
func TestRFC6979(t *testing.T) {
// Test vectors matching Trezor and CoreBitcoin implementations.
// - https://github.com/trezor/trezor-crypto/blob/9fea8f8ab377dc514e40c6fd1f7c89a74c1d8dc6/tests.c#L432-L453
// - https://github.com/oleganza/CoreBitcoin/blob/e93dd71207861b5bf044415db5fa72405e7d8fbc/CoreBitcoin/BTCKey%2BTests.m#L23-L49
tests := []struct {
key string
msg string
nonce string
signature string
}{
{
"cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50",
"sample",
"2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3",
"3045022100af340daf02cc15c8d5d08d7735dfe6b98a474ed373bdb5fbecf7571be52b384202205009fb27f37034a9b24b707b7c6b79ca23ddef9e25f7282e8a797efe53a8f124",
},
{
// This signature hits the case when S is higher than halforder.
// If S is not canonicalized (lowered by halforder), this test will fail.
"0000000000000000000000000000000000000000000000000000000000000001",
"Satoshi Nakamoto",
"8f8a276c19f4149656b280621e358cce24f5f52542772691ee69063b74f15d15",
"3045022100934b1ea10a4b3c1757e2b0c017d0b6143ce3c9a7e6a4a49860d7a6ab210ee3d802202442ce9d2b916064108014783e923ec36b49743e2ffa1c4496f01a512aafd9e5",
},
{
"fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140",
"Satoshi Nakamoto",
"33a19b60e25fb6f4435af53a3d42d493644827367e6453928554f43e49aa6f90",
"3045022100fd567d121db66e382991534ada77a6bd3106f0a1098c231e47993447cd6af2d002206b39cd0eb1bc8603e159ef5c20a5c8ad685a45b06ce9bebed3f153d10d93bed5",
},
{
"f8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181",
"Alan Turing",
"525a82b70e67874398067543fd84c83d30c175fdc45fdeee082fe13b1d7cfdf1",
"304402207063ae83e7f62bbb171798131b4a0564b956930092b33b07b395615d9ec7e15c022058dfcc1e00a35e1572f366ffe34ba0fc47db1e7189759b9fb233c5b05ab388ea",
},
{
"0000000000000000000000000000000000000000000000000000000000000001",
"All those moments will be lost in time, like tears in rain. Time to die...",
"38aa22d72376b4dbc472e06c3ba403ee0a394da63fc58d88686c611aba98d6b3",
"30450221008600dbd41e348fe5c9465ab92d23e3db8b98b873beecd930736488696438cb6b0220547fe64427496db33bf66019dacbf0039c04199abb0122918601db38a72cfc21",
},
{
"e91671c46231f833a6406ccbea0e3e392c76c167bac1cb013f6f1013980455c2",
"There is a computer disease that anybody who works with computers knows about. It's a very serious disease and it interferes completely with the work. The trouble with computers is that you 'play' with them!",
"1f4b84c23a86a221d233f2521be018d9318639d5b8bbd6374a8a59232d16ad3d",
"3045022100b552edd27580141f3b2a5463048cb7cd3e047b97c9f98076c32dbdf85a68718b0220279fa72dd19bfae05577e06c7c0c1900c371fcd5893f7e1d56a37d30174671f6",
},
}
for i, test := range tests {
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), decodeHex(test.key))
hash := fastsha256.Sum256([]byte(test.msg))
// Ensure deterministically generated nonce is the expected value.
gotNonce := btcec.TstNonceRFC6979(privKey.D, hash[:]).Bytes()
wantNonce := decodeHex(test.nonce)
if !bytes.Equal(gotNonce, wantNonce) {
t.Errorf("NonceRFC6979 #%d (%s): Nonce is incorrect: "+
"%x (expected %x)", i, test.msg, gotNonce,
wantNonce)
continue
}
// Ensure deterministically generated signature is the expected value.
gotSig, err := privKey.Sign(hash[:])
if err != nil {
t.Errorf("Sign #%d (%s): unexpected error: %v", i,
test.msg, err)
continue
}
gotSigBytes := gotSig.Serialize()
wantSigBytes := decodeHex(test.signature)
if !bytes.Equal(gotSigBytes, wantSigBytes) {
t.Errorf("Sign #%d (%s): mismatched signature: %x "+
"(expected %x)", i, test.msg, gotSigBytes,
wantSigBytes)
continue
}
}
}