Move non-mempool specific functions to new file.
No functional change. Add tests.
This commit is contained in:
parent
5c50db5357
commit
3d6afcffe7
3 changed files with 541 additions and 282 deletions
284
mempool.go
284
mempool.go
|
@ -63,11 +63,6 @@ const (
|
|||
// (1 + 15*74 + 3) + (15*34 + 3) + 23 = 1650
|
||||
maxStandardSigScriptSize = 1650
|
||||
|
||||
// maxStandardMultiSigKeys is the maximum number of public keys allowed
|
||||
// in a multi-signature transaction output script for it to be
|
||||
// considered standard.
|
||||
maxStandardMultiSigKeys = 3
|
||||
|
||||
// defaultMinRelayTxFee is the minimum fee in satoshi that is required
|
||||
// for a transaction to be treated as free for relay and mining
|
||||
// purposes. It is also used to help determine if a transaction is
|
||||
|
@ -102,125 +97,6 @@ type txMemPool struct {
|
|||
lastPennyUnix int64 // unix time of last ``penny spend''
|
||||
}
|
||||
|
||||
// isDust returns whether or not the passed transaction output amount is
|
||||
// considered dust or not. Dust is defined in terms of the minimum transaction
|
||||
// relay fee. In particular, if the cost to the network to spend coins is more
|
||||
// than 1/3 of the minimum transaction relay fee, it is considered dust.
|
||||
func isDust(txOut *wire.TxOut) bool {
|
||||
// Unspendable outputs are considered dust.
|
||||
if txscript.IsUnspendable(txOut.PkScript) {
|
||||
return true
|
||||
}
|
||||
|
||||
// The total serialized size consists of the output and the associated
|
||||
// input script to redeem it. Since there is no input script
|
||||
// to redeem it yet, use the minimum size of a typical input script.
|
||||
//
|
||||
// Pay-to-pubkey-hash bytes breakdown:
|
||||
//
|
||||
// Output to hash (34 bytes):
|
||||
// 8 value, 1 script len, 25 script [1 OP_DUP, 1 OP_HASH_160,
|
||||
// 1 OP_DATA_20, 20 hash, 1 OP_EQUALVERIFY, 1 OP_CHECKSIG]
|
||||
//
|
||||
// Input with compressed pubkey (148 bytes):
|
||||
// 36 prev outpoint, 1 script len, 107 script [1 OP_DATA_72, 72 sig,
|
||||
// 1 OP_DATA_33, 33 compressed pubkey], 4 sequence
|
||||
//
|
||||
// Input with uncompressed pubkey (180 bytes):
|
||||
// 36 prev outpoint, 1 script len, 139 script [1 OP_DATA_72, 72 sig,
|
||||
// 1 OP_DATA_65, 65 compressed pubkey], 4 sequence
|
||||
//
|
||||
// Pay-to-pubkey bytes breakdown:
|
||||
//
|
||||
// Output to compressed pubkey (44 bytes):
|
||||
// 8 value, 1 script len, 35 script [1 OP_DATA_33,
|
||||
// 33 compressed pubkey, 1 OP_CHECKSIG]
|
||||
//
|
||||
// Output to uncompressed pubkey (76 bytes):
|
||||
// 8 value, 1 script len, 67 script [1 OP_DATA_65, 65 pubkey,
|
||||
// 1 OP_CHECKSIG]
|
||||
//
|
||||
// Input (114 bytes):
|
||||
// 36 prev outpoint, 1 script len, 73 script [1 OP_DATA_72,
|
||||
// 72 sig], 4 sequence
|
||||
//
|
||||
// Theoretically this could examine the script type of the output script
|
||||
// and use a different size for the typical input script size for
|
||||
// pay-to-pubkey vs pay-to-pubkey-hash inputs per the above breakdowns,
|
||||
// but the only combinination which is less than the value chosen is
|
||||
// a pay-to-pubkey script with a compressed pubkey, which is not very
|
||||
// common.
|
||||
//
|
||||
// The most common scripts are pay-to-pubkey-hash, and as per the above
|
||||
// breakdown, the minimum size of a p2pkh input script is 148 bytes. So
|
||||
// that figure is used.
|
||||
totalSize := txOut.SerializeSize() + 148
|
||||
|
||||
// The output is considered dust if the cost to the network to spend the
|
||||
// coins is more than 1/3 of the minimum free transaction relay fee.
|
||||
// minFreeTxRelayFee is in Satoshi/KB, so multiply by 1000 to
|
||||
// convert to bytes.
|
||||
//
|
||||
// Using the typical values for a pay-to-pubkey-hash transaction from
|
||||
// the breakdown above and the default minimum free transaction relay
|
||||
// fee of 1000, this equates to values less than 546 satoshi being
|
||||
// considered dust.
|
||||
//
|
||||
// The following is equivalent to (value/totalSize) * (1/3) * 1000
|
||||
// without needing to do floating point math.
|
||||
return txOut.Value*1000/(3*int64(totalSize)) < int64(cfg.minRelayTxFee)
|
||||
}
|
||||
|
||||
// checkPkScriptStandard performs a series of checks on a transaction ouput
|
||||
// script (public key script) to ensure it is a "standard" public key script.
|
||||
// A standard public key script is one that is a recognized form, and for
|
||||
// multi-signature scripts, only contains from 1 to maxStandardMultiSigKeys
|
||||
// public keys.
|
||||
func checkPkScriptStandard(pkScript []byte, scriptClass txscript.ScriptClass) error {
|
||||
switch scriptClass {
|
||||
case txscript.MultiSigTy:
|
||||
numPubKeys, numSigs, err := txscript.CalcMultiSigStats(pkScript)
|
||||
if err != nil {
|
||||
str := fmt.Sprintf("multi-signature script parse "+
|
||||
"failure: %v", err)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A standard multi-signature public key script must contain
|
||||
// from 1 to maxStandardMultiSigKeys public keys.
|
||||
if numPubKeys < 1 {
|
||||
str := "multi-signature script with no pubkeys"
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
if numPubKeys > maxStandardMultiSigKeys {
|
||||
str := fmt.Sprintf("multi-signature script with %d "+
|
||||
"public keys which is more than the allowed "+
|
||||
"max of %d", numPubKeys, maxStandardMultiSigKeys)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A standard multi-signature public key script must have at
|
||||
// least 1 signature and no more signatures than available
|
||||
// public keys.
|
||||
if numSigs < 1 {
|
||||
return txRuleError(wire.RejectNonstandard,
|
||||
"multi-signature script with no signatures")
|
||||
}
|
||||
if numSigs > numPubKeys {
|
||||
str := fmt.Sprintf("multi-signature script with %d "+
|
||||
"signatures which is more than the available "+
|
||||
"%d public keys", numSigs, numPubKeys)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
case txscript.NonStandardTy:
|
||||
return txRuleError(wire.RejectNonstandard,
|
||||
"non-standard script form")
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// checkTransactionStandard performs a series of checks on a transaction to
|
||||
// ensure it is a "standard" transaction. A standard transaction is one that
|
||||
// conforms to several additional limiting cases over what is considered a
|
||||
|
@ -303,7 +179,7 @@ func (mp *txMemPool) checkTransactionStandard(tx *btcutil.Tx, height int32) erro
|
|||
// "dust".
|
||||
if scriptClass == txscript.NullDataTy {
|
||||
numNullDataOutputs++
|
||||
} else if isDust(txOut) {
|
||||
} else if isDust(txOut, cfg.minRelayTxFee) {
|
||||
str := fmt.Sprintf("transaction output %d: payment "+
|
||||
"of %d is dust", i, txOut.Value)
|
||||
return txRuleError(wire.RejectDust, str)
|
||||
|
@ -320,78 +196,6 @@ func (mp *txMemPool) checkTransactionStandard(tx *btcutil.Tx, height int32) erro
|
|||
return nil
|
||||
}
|
||||
|
||||
// checkInputsStandard performs a series of checks on a transaction's inputs
|
||||
// to ensure they are "standard". A standard transaction input is one that
|
||||
// that consumes the expected number of elements from the stack and that number
|
||||
// is the same as the output script pushes. This help prevent resource
|
||||
// exhaustion attacks by "creative" use of scripts that are super expensive to
|
||||
// process like OP_DUP OP_CHECKSIG OP_DROP repeated a large number of times
|
||||
// followed by a final OP_TRUE.
|
||||
func checkInputsStandard(tx *btcutil.Tx, txStore blockchain.TxStore) error {
|
||||
// NOTE: The reference implementation also does a coinbase check here,
|
||||
// but coinbases have already been rejected prior to calling this
|
||||
// function so no need to recheck.
|
||||
|
||||
for i, txIn := range tx.MsgTx().TxIn {
|
||||
// It is safe to elide existence and index checks here since
|
||||
// they have already been checked prior to calling this
|
||||
// function.
|
||||
prevOut := txIn.PreviousOutPoint
|
||||
originTx := txStore[prevOut.Hash].Tx.MsgTx()
|
||||
originPkScript := originTx.TxOut[prevOut.Index].PkScript
|
||||
|
||||
// Calculate stats for the script pair.
|
||||
scriptInfo, err := txscript.CalcScriptInfo(txIn.SignatureScript,
|
||||
originPkScript, true)
|
||||
if err != nil {
|
||||
str := fmt.Sprintf("transaction input #%d script parse "+
|
||||
"failure: %v", i, err)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A negative value for expected inputs indicates the script is
|
||||
// non-standard in some way.
|
||||
if scriptInfo.ExpectedInputs < 0 {
|
||||
str := fmt.Sprintf("transaction input #%d expects %d "+
|
||||
"inputs", i, scriptInfo.ExpectedInputs)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// The script pair is non-standard if the number of available
|
||||
// inputs does not match the number of expected inputs.
|
||||
if scriptInfo.NumInputs != scriptInfo.ExpectedInputs {
|
||||
str := fmt.Sprintf("transaction input #%d expects %d "+
|
||||
"inputs, but referenced output script provides "+
|
||||
"%d", i, scriptInfo.ExpectedInputs,
|
||||
scriptInfo.NumInputs)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// calcMinRequiredTxRelayFee returns the minimum transaction fee required for a
|
||||
// transaction with the passed serialized size to be accepted into the memory
|
||||
// pool and relayed.
|
||||
func calcMinRequiredTxRelayFee(serializedSize int64) int64 {
|
||||
// Calculate the minimum fee for a transaction to be allowed into the
|
||||
// mempool and relayed by scaling the base fee (which is the minimum
|
||||
// free transaction relay fee). cfg.minRelayTxFee is in Satoshi/KB, so
|
||||
// divide the transaction size by 1000 to convert to kilobytes. Also,
|
||||
// integer division is used so fees only increase on full kilobyte
|
||||
// boundaries.
|
||||
minFee := (1 + serializedSize/1000) * int64(cfg.minRelayTxFee)
|
||||
|
||||
// Set the minimum fee to the maximum possible value if the calculated
|
||||
// fee is not in the valid range for monetary amounts.
|
||||
if minFee < 0 || minFee > btcutil.MaxSatoshi {
|
||||
minFee = btcutil.MaxSatoshi
|
||||
}
|
||||
|
||||
return minFee
|
||||
}
|
||||
|
||||
// removeOrphan is the internal function which implements the public
|
||||
// RemoveOrphan. See the comment for RemoveOrphan for more details.
|
||||
//
|
||||
|
@ -788,90 +592,6 @@ func (mp *txMemPool) indexScriptAddressToTx(pkScript []byte, tx *btcutil.Tx) err
|
|||
return nil
|
||||
}
|
||||
|
||||
// calcInputValueAge is a helper function used to calculate the input age of
|
||||
// a transaction. The input age for a txin is the number of confirmations
|
||||
// since the referenced txout multiplied by its output value. The total input
|
||||
// age is the sum of this value for each txin. Any inputs to the transaction
|
||||
// which are currently in the mempool and hence not mined into a block yet,
|
||||
// contribute no additional input age to the transaction.
|
||||
func calcInputValueAge(txDesc *TxDesc, txStore blockchain.TxStore, nextBlockHeight int32) float64 {
|
||||
var totalInputAge float64
|
||||
for _, txIn := range txDesc.Tx.MsgTx().TxIn {
|
||||
originHash := &txIn.PreviousOutPoint.Hash
|
||||
originIndex := txIn.PreviousOutPoint.Index
|
||||
|
||||
// Don't attempt to accumulate the total input age if the txIn
|
||||
// in question doesn't exist.
|
||||
if txData, exists := txStore[*originHash]; exists && txData.Tx != nil {
|
||||
// Inputs with dependencies currently in the mempool
|
||||
// have their block height set to a special constant.
|
||||
// Their input age should computed as zero since their
|
||||
// parent hasn't made it into a block yet.
|
||||
var inputAge int32
|
||||
if txData.BlockHeight == mempoolHeight {
|
||||
inputAge = 0
|
||||
} else {
|
||||
inputAge = nextBlockHeight - txData.BlockHeight
|
||||
}
|
||||
|
||||
// Sum the input value times age.
|
||||
originTxOut := txData.Tx.MsgTx().TxOut[originIndex]
|
||||
inputValue := originTxOut.Value
|
||||
totalInputAge += float64(inputValue * int64(inputAge))
|
||||
}
|
||||
}
|
||||
|
||||
return totalInputAge
|
||||
}
|
||||
|
||||
// minInt is a helper function to return the minimum of two ints. This avoids
|
||||
// a math import and the need to cast to floats.
|
||||
func minInt(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// calcPriority returns a transaction priority given a transaction and the sum
|
||||
// of each of its input values multiplied by their age (# of confirmations).
|
||||
// Thus, the final formula for the priority is:
|
||||
// sum(inputValue * inputAge) / adjustedTxSize
|
||||
func calcPriority(tx *btcutil.Tx, inputValueAge float64) float64 {
|
||||
// In order to encourage spending multiple old unspent transaction
|
||||
// outputs thereby reducing the total set, don't count the constant
|
||||
// overhead for each input as well as enough bytes of the signature
|
||||
// script to cover a pay-to-script-hash redemption with a compressed
|
||||
// pubkey. This makes additional inputs free by boosting the priority
|
||||
// of the transaction accordingly. No more incentive is given to avoid
|
||||
// encouraging gaming future transactions through the use of junk
|
||||
// outputs. This is the same logic used in the reference
|
||||
// implementation.
|
||||
//
|
||||
// The constant overhead for a txin is 41 bytes since the previous
|
||||
// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
|
||||
// signature script length.
|
||||
//
|
||||
// A compressed pubkey pay-to-script-hash redemption with a maximum len
|
||||
// signature is of the form:
|
||||
// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
|
||||
// <33 byte compresed pubkey> + OP_CHECKSIG}]
|
||||
//
|
||||
// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
|
||||
overhead := 0
|
||||
for _, txIn := range tx.MsgTx().TxIn {
|
||||
// Max inputs + size can't possibly overflow here.
|
||||
overhead += 41 + minInt(110, len(txIn.SignatureScript))
|
||||
}
|
||||
|
||||
serializedTxSize := tx.MsgTx().SerializeSize()
|
||||
if overhead >= serializedTxSize {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
return inputValueAge / float64(serializedTxSize-overhead)
|
||||
}
|
||||
|
||||
// StartingPriority calculates the priority of this tx descriptor's underlying
|
||||
// transaction relative to when it was first added to the mempool. The result
|
||||
// is lazily computed and then cached for subsequent function calls.
|
||||
|
@ -1168,7 +888,7 @@ func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit boo
|
|||
// transaction does not exceeed 1000 less than the reserved space for
|
||||
// high-priority transactions, don't require a fee for it.
|
||||
serializedSize := int64(tx.MsgTx().SerializeSize())
|
||||
minFee := calcMinRequiredTxRelayFee(serializedSize)
|
||||
minFee := calcMinRequiredTxRelayFee(serializedSize, cfg.minRelayTxFee)
|
||||
if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee {
|
||||
str := fmt.Sprintf("transaction %v has %d fees which is under "+
|
||||
"the required amount of %d", txHash, txFee,
|
||||
|
|
297
policy.go
Normal file
297
policy.go
Normal file
|
@ -0,0 +1,297 @@
|
|||
// Copyright (c) 2013-2015 The btcsuite developers
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/btcsuite/btcd/blockchain"
|
||||
"github.com/btcsuite/btcd/txscript"
|
||||
"github.com/btcsuite/btcd/wire"
|
||||
"github.com/btcsuite/btcutil"
|
||||
)
|
||||
|
||||
const (
|
||||
// maxStandardMultiSigKeys is the maximum number of public keys allowed
|
||||
// in a multi-signature transaction output script for it to be
|
||||
// considered standard.
|
||||
maxStandardMultiSigKeys = 3
|
||||
)
|
||||
|
||||
// calcMinRequiredTxRelayFee returns the minimum transaction fee required for a
|
||||
// transaction with the passed serialized size to be accepted into the memory
|
||||
// pool and relayed.
|
||||
func calcMinRequiredTxRelayFee(serializedSize int64, minRelayTxFee btcutil.Amount) int64 {
|
||||
// Calculate the minimum fee for a transaction to be allowed into the
|
||||
// mempool and relayed by scaling the base fee (which is the minimum
|
||||
// free transaction relay fee). minRelayTxFee is in Satoshi/KB, so
|
||||
// divide the transaction size by 1000 to convert to kilobytes. Also,
|
||||
// integer division is used so fees only increase on full kilobyte
|
||||
// boundaries.
|
||||
minFee := (1 + serializedSize/1000) * int64(minRelayTxFee)
|
||||
|
||||
// Set the minimum fee to the maximum possible value if the calculated
|
||||
// fee is not in the valid range for monetary amounts.
|
||||
if minFee < 0 || minFee > btcutil.MaxSatoshi {
|
||||
minFee = btcutil.MaxSatoshi
|
||||
}
|
||||
|
||||
return minFee
|
||||
}
|
||||
|
||||
// calcPriority returns a transaction priority given a transaction and the sum
|
||||
// of each of its input values multiplied by their age (# of confirmations).
|
||||
// Thus, the final formula for the priority is:
|
||||
// sum(inputValue * inputAge) / adjustedTxSize
|
||||
func calcPriority(tx *btcutil.Tx, inputValueAge float64) float64 {
|
||||
// In order to encourage spending multiple old unspent transaction
|
||||
// outputs thereby reducing the total set, don't count the constant
|
||||
// overhead for each input as well as enough bytes of the signature
|
||||
// script to cover a pay-to-script-hash redemption with a compressed
|
||||
// pubkey. This makes additional inputs free by boosting the priority
|
||||
// of the transaction accordingly. No more incentive is given to avoid
|
||||
// encouraging gaming future transactions through the use of junk
|
||||
// outputs. This is the same logic used in the reference
|
||||
// implementation.
|
||||
//
|
||||
// The constant overhead for a txin is 41 bytes since the previous
|
||||
// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
|
||||
// signature script length.
|
||||
//
|
||||
// A compressed pubkey pay-to-script-hash redemption with a maximum len
|
||||
// signature is of the form:
|
||||
// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
|
||||
// <33 byte compresed pubkey> + OP_CHECKSIG}]
|
||||
//
|
||||
// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
|
||||
overhead := 0
|
||||
for _, txIn := range tx.MsgTx().TxIn {
|
||||
// Max inputs + size can't possibly overflow here.
|
||||
overhead += 41 + minInt(110, len(txIn.SignatureScript))
|
||||
}
|
||||
|
||||
serializedTxSize := tx.MsgTx().SerializeSize()
|
||||
if overhead >= serializedTxSize {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
return inputValueAge / float64(serializedTxSize-overhead)
|
||||
}
|
||||
|
||||
// calcInputValueAge is a helper function used to calculate the input age of
|
||||
// a transaction. The input age for a txin is the number of confirmations
|
||||
// since the referenced txout multiplied by its output value. The total input
|
||||
// age is the sum of this value for each txin. Any inputs to the transaction
|
||||
// which are currently in the mempool and hence not mined into a block yet,
|
||||
// contribute no additional input age to the transaction.
|
||||
func calcInputValueAge(txDesc *TxDesc, txStore blockchain.TxStore, nextBlockHeight int32) float64 {
|
||||
var totalInputAge float64
|
||||
for _, txIn := range txDesc.Tx.MsgTx().TxIn {
|
||||
originHash := &txIn.PreviousOutPoint.Hash
|
||||
originIndex := txIn.PreviousOutPoint.Index
|
||||
|
||||
// Don't attempt to accumulate the total input age if the txIn
|
||||
// in question doesn't exist.
|
||||
if txData, exists := txStore[*originHash]; exists && txData.Tx != nil {
|
||||
// Inputs with dependencies currently in the mempool
|
||||
// have their block height set to a special constant.
|
||||
// Their input age should computed as zero since their
|
||||
// parent hasn't made it into a block yet.
|
||||
var inputAge int32
|
||||
if txData.BlockHeight == mempoolHeight {
|
||||
inputAge = 0
|
||||
} else {
|
||||
inputAge = nextBlockHeight - txData.BlockHeight
|
||||
}
|
||||
|
||||
// Sum the input value times age.
|
||||
originTxOut := txData.Tx.MsgTx().TxOut[originIndex]
|
||||
inputValue := originTxOut.Value
|
||||
totalInputAge += float64(inputValue * int64(inputAge))
|
||||
}
|
||||
}
|
||||
|
||||
return totalInputAge
|
||||
}
|
||||
|
||||
// checkInputsStandard performs a series of checks on a transaction's inputs
|
||||
// to ensure they are "standard". A standard transaction input is one that
|
||||
// that consumes the expected number of elements from the stack and that number
|
||||
// is the same as the output script pushes. This help prevent resource
|
||||
// exhaustion attacks by "creative" use of scripts that are super expensive to
|
||||
// process like OP_DUP OP_CHECKSIG OP_DROP repeated a large number of times
|
||||
// followed by a final OP_TRUE.
|
||||
func checkInputsStandard(tx *btcutil.Tx, txStore blockchain.TxStore) error {
|
||||
// NOTE: The reference implementation also does a coinbase check here,
|
||||
// but coinbases have already been rejected prior to calling this
|
||||
// function so no need to recheck.
|
||||
|
||||
for i, txIn := range tx.MsgTx().TxIn {
|
||||
// It is safe to elide existence and index checks here since
|
||||
// they have already been checked prior to calling this
|
||||
// function.
|
||||
prevOut := txIn.PreviousOutPoint
|
||||
originTx := txStore[prevOut.Hash].Tx.MsgTx()
|
||||
originPkScript := originTx.TxOut[prevOut.Index].PkScript
|
||||
|
||||
// Calculate stats for the script pair.
|
||||
scriptInfo, err := txscript.CalcScriptInfo(txIn.SignatureScript,
|
||||
originPkScript, true)
|
||||
if err != nil {
|
||||
str := fmt.Sprintf("transaction input #%d script parse "+
|
||||
"failure: %v", i, err)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A negative value for expected inputs indicates the script is
|
||||
// non-standard in some way.
|
||||
if scriptInfo.ExpectedInputs < 0 {
|
||||
str := fmt.Sprintf("transaction input #%d expects %d "+
|
||||
"inputs", i, scriptInfo.ExpectedInputs)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// The script pair is non-standard if the number of available
|
||||
// inputs does not match the number of expected inputs.
|
||||
if scriptInfo.NumInputs != scriptInfo.ExpectedInputs {
|
||||
str := fmt.Sprintf("transaction input #%d expects %d "+
|
||||
"inputs, but referenced output script provides "+
|
||||
"%d", i, scriptInfo.ExpectedInputs,
|
||||
scriptInfo.NumInputs)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// checkPkScriptStandard performs a series of checks on a transaction ouput
|
||||
// script (public key script) to ensure it is a "standard" public key script.
|
||||
// A standard public key script is one that is a recognized form, and for
|
||||
// multi-signature scripts, only contains from 1 to maxStandardMultiSigKeys
|
||||
// public keys.
|
||||
func checkPkScriptStandard(pkScript []byte, scriptClass txscript.ScriptClass) error {
|
||||
switch scriptClass {
|
||||
case txscript.MultiSigTy:
|
||||
numPubKeys, numSigs, err := txscript.CalcMultiSigStats(pkScript)
|
||||
if err != nil {
|
||||
str := fmt.Sprintf("multi-signature script parse "+
|
||||
"failure: %v", err)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A standard multi-signature public key script must contain
|
||||
// from 1 to maxStandardMultiSigKeys public keys.
|
||||
if numPubKeys < 1 {
|
||||
str := "multi-signature script with no pubkeys"
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
if numPubKeys > maxStandardMultiSigKeys {
|
||||
str := fmt.Sprintf("multi-signature script with %d "+
|
||||
"public keys which is more than the allowed "+
|
||||
"max of %d", numPubKeys, maxStandardMultiSigKeys)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
// A standard multi-signature public key script must have at
|
||||
// least 1 signature and no more signatures than available
|
||||
// public keys.
|
||||
if numSigs < 1 {
|
||||
return txRuleError(wire.RejectNonstandard,
|
||||
"multi-signature script with no signatures")
|
||||
}
|
||||
if numSigs > numPubKeys {
|
||||
str := fmt.Sprintf("multi-signature script with %d "+
|
||||
"signatures which is more than the available "+
|
||||
"%d public keys", numSigs, numPubKeys)
|
||||
return txRuleError(wire.RejectNonstandard, str)
|
||||
}
|
||||
|
||||
case txscript.NonStandardTy:
|
||||
return txRuleError(wire.RejectNonstandard,
|
||||
"non-standard script form")
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// isDust returns whether or not the passed transaction output amount is
|
||||
// considered dust or not based on the passed minimum transaction relay fee.
|
||||
// Dust is defined in terms of the minimum transaction relay fee. In
|
||||
// particular, if the cost to the network to spend coins is more than 1/3 of the
|
||||
// minimum transaction relay fee, it is considered dust.
|
||||
func isDust(txOut *wire.TxOut, minRelayTxFee btcutil.Amount) bool {
|
||||
// Unspendable outputs are considered dust.
|
||||
if txscript.IsUnspendable(txOut.PkScript) {
|
||||
return true
|
||||
}
|
||||
|
||||
// The total serialized size consists of the output and the associated
|
||||
// input script to redeem it. Since there is no input script
|
||||
// to redeem it yet, use the minimum size of a typical input script.
|
||||
//
|
||||
// Pay-to-pubkey-hash bytes breakdown:
|
||||
//
|
||||
// Output to hash (34 bytes):
|
||||
// 8 value, 1 script len, 25 script [1 OP_DUP, 1 OP_HASH_160,
|
||||
// 1 OP_DATA_20, 20 hash, 1 OP_EQUALVERIFY, 1 OP_CHECKSIG]
|
||||
//
|
||||
// Input with compressed pubkey (148 bytes):
|
||||
// 36 prev outpoint, 1 script len, 107 script [1 OP_DATA_72, 72 sig,
|
||||
// 1 OP_DATA_33, 33 compressed pubkey], 4 sequence
|
||||
//
|
||||
// Input with uncompressed pubkey (180 bytes):
|
||||
// 36 prev outpoint, 1 script len, 139 script [1 OP_DATA_72, 72 sig,
|
||||
// 1 OP_DATA_65, 65 compressed pubkey], 4 sequence
|
||||
//
|
||||
// Pay-to-pubkey bytes breakdown:
|
||||
//
|
||||
// Output to compressed pubkey (44 bytes):
|
||||
// 8 value, 1 script len, 35 script [1 OP_DATA_33,
|
||||
// 33 compressed pubkey, 1 OP_CHECKSIG]
|
||||
//
|
||||
// Output to uncompressed pubkey (76 bytes):
|
||||
// 8 value, 1 script len, 67 script [1 OP_DATA_65, 65 pubkey,
|
||||
// 1 OP_CHECKSIG]
|
||||
//
|
||||
// Input (114 bytes):
|
||||
// 36 prev outpoint, 1 script len, 73 script [1 OP_DATA_72,
|
||||
// 72 sig], 4 sequence
|
||||
//
|
||||
// Theoretically this could examine the script type of the output script
|
||||
// and use a different size for the typical input script size for
|
||||
// pay-to-pubkey vs pay-to-pubkey-hash inputs per the above breakdowns,
|
||||
// but the only combinination which is less than the value chosen is
|
||||
// a pay-to-pubkey script with a compressed pubkey, which is not very
|
||||
// common.
|
||||
//
|
||||
// The most common scripts are pay-to-pubkey-hash, and as per the above
|
||||
// breakdown, the minimum size of a p2pkh input script is 148 bytes. So
|
||||
// that figure is used.
|
||||
totalSize := txOut.SerializeSize() + 148
|
||||
|
||||
// The output is considered dust if the cost to the network to spend the
|
||||
// coins is more than 1/3 of the minimum free transaction relay fee.
|
||||
// minFreeTxRelayFee is in Satoshi/KB, so multiply by 1000 to
|
||||
// convert to bytes.
|
||||
//
|
||||
// Using the typical values for a pay-to-pubkey-hash transaction from
|
||||
// the breakdown above and the default minimum free transaction relay
|
||||
// fee of 1000, this equates to values less than 546 satoshi being
|
||||
// considered dust.
|
||||
//
|
||||
// The following is equivalent to (value/totalSize) * (1/3) * 1000
|
||||
// without needing to do floating point math.
|
||||
return txOut.Value*1000/(3*int64(totalSize)) < int64(minRelayTxFee)
|
||||
}
|
||||
|
||||
// minInt is a helper function to return the minimum of two ints. This avoids
|
||||
// a math import and the need to cast to floats.
|
||||
func minInt(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
242
policy_test.go
Normal file
242
policy_test.go
Normal file
|
@ -0,0 +1,242 @@
|
|||
// Copyright (c) 2013-2015 The btcsuite developers
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/btcsuite/btcd/btcec"
|
||||
"github.com/btcsuite/btcd/txscript"
|
||||
"github.com/btcsuite/btcd/wire"
|
||||
"github.com/btcsuite/btcutil"
|
||||
)
|
||||
|
||||
// TestCalcMinRequiredTxRelayFee tests the calcMinRequiredTxRelayFee API.
|
||||
func TestCalcMinRequiredTxRelayFee(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string // test description.
|
||||
size int64 // Transaction size in bytes.
|
||||
relayFee btcutil.Amount // minimum relay transaction fee.
|
||||
want int64 // Expected fee.
|
||||
}{
|
||||
{
|
||||
"zero value with default minimum relay fee",
|
||||
0,
|
||||
defaultMinRelayTxFee,
|
||||
int64(defaultMinRelayTxFee),
|
||||
},
|
||||
{
|
||||
"100 bytes with default minimum relay fee",
|
||||
100,
|
||||
defaultMinRelayTxFee,
|
||||
int64(defaultMinRelayTxFee),
|
||||
},
|
||||
{
|
||||
"max standard tx size with default minimum relay fee",
|
||||
maxStandardTxSize,
|
||||
defaultMinRelayTxFee,
|
||||
101000,
|
||||
},
|
||||
{
|
||||
"max standard tx size with max satoshi relay fee",
|
||||
maxStandardTxSize,
|
||||
btcutil.MaxSatoshi,
|
||||
btcutil.MaxSatoshi,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
got := calcMinRequiredTxRelayFee(test.size, test.relayFee)
|
||||
if got != test.want {
|
||||
t.Errorf("TestCalcMinRequiredTxRelayFee test '%s' "+
|
||||
"failed: got %v want %v", test.name, got,
|
||||
test.want)
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestCheckPkScriptStandard tests the checkPkScriptStandard API.
|
||||
func TestCheckPkScriptStandard(t *testing.T) {
|
||||
var pubKeys [][]byte
|
||||
for i := 0; i < 4; i++ {
|
||||
pk, err := btcec.NewPrivateKey(btcec.S256())
|
||||
if err != nil {
|
||||
t.Fatalf("TestCheckPkScriptStandard NewPrivateKey failed: %v",
|
||||
err)
|
||||
return
|
||||
}
|
||||
pubKeys = append(pubKeys, pk.PubKey().SerializeCompressed())
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string // test description.
|
||||
script *txscript.ScriptBuilder
|
||||
isStandard bool
|
||||
}{
|
||||
{
|
||||
"key1 and key2",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_2).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_2).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
true,
|
||||
},
|
||||
{
|
||||
"key1 or key2",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_1).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_2).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
true,
|
||||
},
|
||||
{
|
||||
"escrow",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_2).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddData(pubKeys[2]).
|
||||
AddOp(txscript.OP_3).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
true,
|
||||
},
|
||||
{
|
||||
"one of four",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_1).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddData(pubKeys[2]).AddData(pubKeys[3]).
|
||||
AddOp(txscript.OP_4).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed1",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_3).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_2).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed2",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_2).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_3).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed3",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_0).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_2).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed4",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_1).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_0).AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed5",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_1).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]).
|
||||
AddOp(txscript.OP_CHECKMULTISIG),
|
||||
false,
|
||||
},
|
||||
{
|
||||
"malformed6",
|
||||
txscript.NewScriptBuilder().AddOp(txscript.OP_1).
|
||||
AddData(pubKeys[0]).AddData(pubKeys[1]),
|
||||
false,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
script, err := test.script.Script()
|
||||
if err != nil {
|
||||
t.Fatalf("TestCheckPkScriptStandard test '%s' "+
|
||||
"failed: %v", test.name, err)
|
||||
continue
|
||||
}
|
||||
scriptClass := txscript.GetScriptClass(script)
|
||||
got := checkPkScriptStandard(script, scriptClass)
|
||||
if (test.isStandard && got != nil) ||
|
||||
(!test.isStandard && got == nil) {
|
||||
|
||||
t.Fatalf("TestCheckPkScriptStandard test '%s' failed",
|
||||
test.name)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestDust tests the isDust API.
|
||||
func TestDust(t *testing.T) {
|
||||
pkScript := []byte{0x76, 0xa9, 0x21, 0x03, 0x2f, 0x7e, 0x43,
|
||||
0x0a, 0xa4, 0xc9, 0xd1, 0x59, 0x43, 0x7e, 0x84, 0xb9,
|
||||
0x75, 0xdc, 0x76, 0xd9, 0x00, 0x3b, 0xf0, 0x92, 0x2c,
|
||||
0xf3, 0xaa, 0x45, 0x28, 0x46, 0x4b, 0xab, 0x78, 0x0d,
|
||||
0xba, 0x5e, 0x88, 0xac}
|
||||
|
||||
tests := []struct {
|
||||
name string // test description
|
||||
txOut wire.TxOut
|
||||
relayFee btcutil.Amount // minimum relay transaction fee.
|
||||
isDust bool
|
||||
}{
|
||||
{
|
||||
// Any value is allowed with a zero relay fee.
|
||||
"zero value with zero relay fee",
|
||||
wire.TxOut{0, pkScript},
|
||||
0,
|
||||
false,
|
||||
},
|
||||
{
|
||||
// Zero value is dust with any relay fee"
|
||||
"zero value with very small tx fee",
|
||||
wire.TxOut{0, pkScript},
|
||||
1,
|
||||
true,
|
||||
},
|
||||
{
|
||||
"38 byte public key script with value 584",
|
||||
wire.TxOut{584, pkScript},
|
||||
1000,
|
||||
true,
|
||||
},
|
||||
{
|
||||
"38 byte public key script with value 585",
|
||||
wire.TxOut{585, pkScript},
|
||||
1000,
|
||||
false,
|
||||
},
|
||||
{
|
||||
// Maximum allowed value is never dust.
|
||||
"max satoshi amount is never dust",
|
||||
wire.TxOut{btcutil.MaxSatoshi, pkScript},
|
||||
btcutil.MaxSatoshi,
|
||||
false,
|
||||
},
|
||||
{
|
||||
// Maximum int64 value causes overflow.
|
||||
"maximum int64 value",
|
||||
wire.TxOut{1<<63 - 1, pkScript},
|
||||
1<<63 - 1,
|
||||
true,
|
||||
},
|
||||
{
|
||||
// Unspendable pkScript due to an invalid public key
|
||||
// script.
|
||||
"unspendable pkScript",
|
||||
wire.TxOut{5000, []byte{0x01}},
|
||||
0, // no relay fee
|
||||
true,
|
||||
},
|
||||
}
|
||||
for _, test := range tests {
|
||||
res := isDust(&test.txOut, test.relayFee)
|
||||
if res != test.isDust {
|
||||
t.Fatalf("Dust test '%s' failed: want %v got %v",
|
||||
test.name, test.isDust, res)
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue