Added ECDH and encryption/decryption support

This commit is contained in:
Ishbir Singh 2015-04-09 18:13:35 -04:00
parent 007bee5ec8
commit 58f29ad939
6 changed files with 489 additions and 1 deletions

View file

@ -47,6 +47,16 @@ $ go get github.com/btcsuite/btcd/btcec
Demonstrates verifying a secp256k1 signature against a public key that is
first parsed from raw bytes. The signature is also parsed from raw bytes.
* [Encryption]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage)
Demonstrates encrypting a message for a public key that is first parsed from
raw bytes, then decrypting it using the corresponding private key.
* [Decryption]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage)
Demonstrates decrypting a message using a private key that is first parsed
from raw bytes.
## GPG Verification Key
All official release tags are signed by Conformal so users can ensure the code

216
btcec/ciphering.go Normal file
View file

@ -0,0 +1,216 @@
// Copyright (c) 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"errors"
"io"
)
var (
// ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
// during decryption. This happens because of either invalid private key or
// corrupt ciphertext.
ErrInvalidMAC = errors.New("invalid mac hash")
// errInputTooShort occurs when the input ciphertext to the Decrypt
// function is less than 134 bytes long.
errInputTooShort = errors.New("ciphertext too short")
// errUnsupportedCurve occurs when the first two bytes of the encrypted
// text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
errUnsupportedCurve = errors.New("unsupported curve")
errInvalidXLength = errors.New("invalid X length, must be 32")
errInvalidYLength = errors.New("invalid Y length, must be 32")
errInvalidPadding = errors.New("invalid PKCS#7 padding")
// 0x02CA = 714
ciphCurveBytes = [2]byte{0x02, 0xCA}
// 0x20 = 32
ciphCoordLength = [2]byte{0x00, 0x20}
)
// GenerateSharedSecret generates a shared secret based on a private key and a
// private key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
// RFC5903 Section 9 states we should only return x.
func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
return x.Bytes()
}
// Encrypt encrypts data for the target public key using AES-256-CBC. It also
// generates a private key (the pubkey of which is also in the output). The only
// supported curve is secp256k1. The `structure' that it encodes everything into
// is:
//
// struct {
// // Initialization Vector used for AES-256-CBC
// IV [16]byte
// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
// // len_of_pubkeyY(2) + pubkeyY (curve = 714)
// PublicKey [70]byte
// // Cipher text
// Data []byte
// // HMAC-SHA-256 Message Authentication Code
// HMAC [32]byte
// }
//
// The primary aim is to ensure byte compatibility with Pyelliptic. Additionaly,
// refer to section 5.8.1 of ANSI X9.63 for rationale on this format.
func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
ephemeral, err := NewPrivateKey(S256())
if err != nil {
return nil, err
}
ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
derivedKey := sha512.Sum512(ecdhKey)
keyE := derivedKey[:32]
keyM := derivedKey[32:]
paddedIn := addPKCSPadding(in)
// IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
iv := out[:aes.BlockSize]
if _, err = io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
// start writing public key
pb := ephemeral.PubKey().SerializeUncompressed()
offset := aes.BlockSize
// curve and X length
copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
offset += 4
// X
copy(out[offset:offset+32], pb[1:33])
offset += 32
// Y length
copy(out[offset:offset+2], ciphCoordLength[:])
offset += 2
// Y
copy(out[offset:offset+32], pb[33:])
offset += 32
// start encryption
block, err := aes.NewCipher(keyE)
if err != nil {
return nil, err
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
// start HMAC-SHA-256
hm := hmac.New(sha256.New, keyM)
hm.Write(out[:len(out)-sha256.Size]) // everything is hashed
copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
return out, nil
}
// Decrypt decrypts data that was encrypted using the Encrypt function.
func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
// IV + Curve params/X/Y + 1 block + HMAC-256
if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
return nil, errInputTooShort
}
// read iv
iv := in[:aes.BlockSize]
offset := aes.BlockSize
// start reading pubkey
if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
return nil, errUnsupportedCurve
}
offset += 2
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
return nil, errInvalidXLength
}
offset += 2
xBytes := in[offset : offset+32]
offset += 32
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
return nil, errInvalidYLength
}
offset += 2
yBytes := in[offset : offset+32]
offset += 32
pb := make([]byte, 65)
pb[0] = byte(0x04) // uncompressed
copy(pb[1:33], xBytes)
copy(pb[33:], yBytes)
// check if (X, Y) lies on the curve and create a Pubkey if it does
pubkey, err := ParsePubKey(pb, S256())
if err != nil {
return nil, err
}
// check for cipher text length
if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
return nil, errInvalidPadding // not padded to 16 bytes
}
// read hmac
messageMAC := in[len(in)-sha256.Size:]
// generate shared secret
ecdhKey := GenerateSharedSecret(priv, pubkey)
derivedKey := sha512.Sum512(ecdhKey)
keyE := derivedKey[:32]
keyM := derivedKey[32:]
// verify mac
hm := hmac.New(sha256.New, keyM)
hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
expectedMAC := hm.Sum(nil)
if !bytes.Equal(messageMAC, expectedMAC) {
return nil, ErrInvalidMAC
}
// start decryption
block, err := aes.NewCipher(keyE)
if err != nil {
return nil, err
}
mode := cipher.NewCBCDecrypter(block, iv)
// same length as ciphertext
plaintext := make([]byte, len(in)-offset-sha256.Size)
mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
return removePKCSPadding(plaintext)
}
// Implement PKCS#7 padding with block size of 16 (AES block size).
// addPKCSPadding adds padding to a block of data
func addPKCSPadding(src []byte) []byte {
padding := aes.BlockSize - len(src)%aes.BlockSize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(src, padtext...)
}
// removePKCSPadding removes padding from data that was added with addPKCSPadding
func removePKCSPadding(src []byte) ([]byte, error) {
length := len(src)
padLength := int(src[length-1])
if padLength > aes.BlockSize || length < aes.BlockSize {
return nil, errInvalidPadding
}
return src[:length-padLength], nil
}

176
btcec/ciphering_test.go Normal file
View file

@ -0,0 +1,176 @@
// Copyright (c) 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"bytes"
"encoding/hex"
"testing"
"github.com/btcsuite/btcd/btcec"
)
func TestGenerateSharedSecret(t *testing.T) {
privKey1, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Errorf("private key generation error: %s", err)
return
}
privKey2, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Errorf("private key generation error: %s", err)
return
}
secret1 := btcec.GenerateSharedSecret(privKey1, privKey2.PubKey())
secret2 := btcec.GenerateSharedSecret(privKey2, privKey1.PubKey())
if !bytes.Equal(secret1, secret2) {
t.Errorf("ECDH failed, secrets mismatch - first: %x, second: %x",
secret1, secret2)
}
}
// Test 1: Encryption and decryption
func TestCipheringBasic(t *testing.T) {
privkey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatal("failed to generate private key")
}
in := []byte("Hey there dude. How are you doing? This is a test.")
out, err := btcec.Encrypt(privkey.PubKey(), in)
if err != nil {
t.Fatal("failed to encrypt:", err)
}
dec, err := btcec.Decrypt(privkey, out)
if err != nil {
t.Fatal("failed to decrypt:", err)
}
if !bytes.Equal(in, dec) {
t.Error("decrypted data doesn't match original")
}
}
// Test 2: Byte compatibility with Pyelliptic
func TestCiphering(t *testing.T) {
pb, _ := hex.DecodeString("fe38240982f313ae5afb3e904fb8215fb11af1200592b" +
"fca26c96c4738e4bf8f")
privkey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pb)
in := []byte("This is just a test.")
out, _ := hex.DecodeString("b0d66e5adaa5ed4e2f0ca68e17b8f2fc02ca002009e3" +
"3487e7fa4ab505cf34d98f131be7bd258391588ca7804acb30251e71a04e0020ecf" +
"df0f84608f8add82d7353af780fbb28868c713b7813eb4d4e61f7b75d7534dd9856" +
"9b0ba77cf14348fcff80fee10e11981f1b4be372d93923e9178972f69937ec850ed" +
"6c3f11ff572ddd5b2bedf9f9c0b327c54da02a28fcdce1f8369ffec")
dec, err := btcec.Decrypt(privkey, out)
if err != nil {
t.Fatal("failed to decrypt:", err)
}
if !bytes.Equal(in, dec) {
t.Error("decrypted data doesn't match original")
}
}
func TestCipheringErrors(t *testing.T) {
privkey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatal("failed to generate private key")
}
tests1 := []struct {
ciphertext []byte // input ciphertext
}{
{bytes.Repeat([]byte{0x00}, 133)}, // errInputTooShort
{bytes.Repeat([]byte{0x00}, 134)}, // errUnsupportedCurve
{bytes.Repeat([]byte{0x02, 0xCA}, 134)}, // errInvalidXLength
{bytes.Repeat([]byte{0x02, 0xCA, 0x00, 0x20}, 134)}, // errInvalidYLength
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0xCA, 0x00, 0x20, // curve and X length
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // X
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x20, // Y length
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Y
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}}, // invalid pubkey
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0xCA, 0x00, 0x20, // curve and X length
0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X
0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A,
0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A,
0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5,
0x00, 0x20, // Y length
0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y
0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4,
0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC,
0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
// padding not aligned to 16 bytes
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}}, // errInvalidPadding
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0xCA, 0x00, 0x20, // curve and X length
0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X
0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A,
0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A,
0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5,
0x00, 0x20, // Y length
0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y
0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4,
0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC,
0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}}, // ErrInvalidMAC
}
for i, test := range tests1 {
_, err = btcec.Decrypt(privkey, test.ciphertext)
if err == nil {
t.Errorf("Decrypt #%d did not get error", i)
}
}
// test error from removePKCSPadding
tests2 := []struct {
in []byte // input data
}{
{bytes.Repeat([]byte{0x11}, 17)},
{bytes.Repeat([]byte{0x07}, 15)},
}
for i, test := range tests2 {
_, err = btcec.TstRemovePKCSPadding(test.in)
if err == nil {
t.Errorf("removePKCSPadding #%d did not get error", i)
}
}
}

View file

@ -86,3 +86,83 @@ func Example_verifySignature() {
// Output:
// Signature Verified? true
}
// This example demonstrates encrypting a message for a public key that is first
// parsed from raw bytes, then decrypting it using the corresponding private key.
func Example_encryptMessage() {
// Decode the hex-encoded pubkey of the recipient.
pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" +
"359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" +
"21010db67ac11b1b51b651953d2") // uncompressed pubkey
if err != nil {
fmt.Println(err)
return
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Encrypt a message decryptable by the private key corresponding to pubKey
message := "test message"
ciphertext, err := btcec.Encrypt(pubKey, []byte(message))
if err != nil {
fmt.Println(err)
return
}
// Decode the hex-encoded private key.
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
"5ea381e3ce20a2c086a2e388230811")
if err != nil {
fmt.Println(err)
return
}
// note that we already have corresponding pubKey
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Try decrypting and verify if it's the same message.
plaintext, err := btcec.Decrypt(privKey, ciphertext)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(plaintext))
// Output:
// test message
}
// This example demonstrates decrypting a message using a private key that is
// first parsed from raw bytes.
func Example_decryptMessage() {
// Decode the hex-encoded private key.
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
"5ea381e3ce20a2c086a2e388230811")
if err != nil {
fmt.Println(err)
return
}
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" +
"002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" +
"00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" +
"a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" +
"d14174f8b83354fac3ff56075162")
// Try decrypting the message.
plaintext, err := btcec.Decrypt(privKey, ciphertext)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(plaintext))
// Output:
// test message
}

View file

@ -74,3 +74,9 @@ func NewFieldVal() *fieldVal {
func TstNonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
return nonceRFC6979(privkey, hash)
}
// TstRemovePKCSPadding makes the internal removePKCSPadding function available
// to the test package.
func TstRemovePKCSPadding(src []byte) ([]byte, error) {
return removePKCSPadding(src)
}

View file

@ -107,7 +107,7 @@ func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err err
return nil, fmt.Errorf("pubkey Y parameter is >= to P")
}
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
return nil, fmt.Errorf("pubkey isn't on secp265k1 curve")
return nil, fmt.Errorf("pubkey isn't on secp256k1 curve")
}
return &pubkey, nil
}