Initial implementation.
This commit is contained in:
parent
a2c10e34d9
commit
6e9cc57131
10 changed files with 1045 additions and 1 deletions
49
LICENSE
Normal file
49
LICENSE
Normal file
|
@ -0,0 +1,49 @@
|
|||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
Copyright (c) 2011 ThePiachu. All rights reserved.
|
||||
Copyright (c) 2013 Conformal Systems LLC. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
* The name of ThePiachu may not be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
-------------------
|
||||
|
||||
ISC License
|
||||
|
||||
Copyright (c) 2013 Conformal Systems LLC.
|
||||
|
||||
Permission to use, copy, modify, and distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
73
README.md
73
README.md
|
@ -1,4 +1,75 @@
|
|||
btcec
|
||||
=====
|
||||
|
||||
Package btcec implements the Koblitz elliptic curve secp256k1 used by bitcoin.
|
||||
Package btcec implements elliptic curve cryptography using koblitz curves
|
||||
(secp256k1 only for now). It is designed so that it may be used with the
|
||||
standard crypto/ecdsa packages provided with go. There is a test suite
|
||||
which is aiming to reach 100% code coverage. See `test_coverage.txt`
|
||||
for the current coverage (using gocov). On a UNIX-like OS, the script
|
||||
`cov_report.sh` can be used to generate the report. Package btcec uses
|
||||
work from ThePiachu which is licensed under the same terms as Go. The
|
||||
Conformal original is licensed under the liberal ISC license.
|
||||
|
||||
This package is one of the core packages from btcd, an alternative full-node
|
||||
implementation of bitcoin which is under active development by Conformal.
|
||||
Although it was primarily written for btcd, this package has intentionally been
|
||||
designed so it can be used as a standalone package for any projects needing to
|
||||
use secp256k1 elliptic curve cryptography.
|
||||
|
||||
## Sample Use
|
||||
|
||||
```Go
|
||||
import crypto/ecdsa
|
||||
|
||||
pubKey, err := btcec.ParsePubKey(pkStr, btcec.S256())
|
||||
|
||||
signature, err := btcec.ParseSignature(sigStr, btcec.S256())
|
||||
|
||||
ok := ecdsa.Verify(pubKey, message, signature.R, signature.S)
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
Full `go doc` style documentation for the project can be viewed online without
|
||||
installing this package by using the GoDoc site
|
||||
[here](http://godoc.org/github.com/conformal/btcec).
|
||||
|
||||
You can also view the documentation locally once the package is installed with
|
||||
the `godoc` tool by running `godoc -http=":6060"` and pointing your browser to
|
||||
http://localhost:6060/pkg/github.com/conformal/btcec
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
$ go get github.com/conformal/btcec
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
- Increase test coverage to 100%
|
||||
|
||||
## GPG Verification Key
|
||||
|
||||
All official release tags are signed by Conformal so users can ensure the code
|
||||
has not been tampered with and is coming from Conformal. To verify the
|
||||
signature perform the following:
|
||||
|
||||
- Download the public key from the Conformal website at
|
||||
https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt
|
||||
|
||||
- Import the public key into your GPG keyring:
|
||||
```bash
|
||||
gpg --import GIT-GPG-KEY-conformal.txt
|
||||
```
|
||||
|
||||
- Verify the release tag with the following command where `TAG_NAME` is a
|
||||
placeholder for the specific tag:
|
||||
```bash
|
||||
git tag -v TAG_NAME
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
Package btcec is licensed under the liberal ISC License except for
|
||||
btcec.go and btcec_test.go which is under the same license as Go.
|
||||
|
||||
|
|
256
btcec.go
Normal file
256
btcec.go
Normal file
|
@ -0,0 +1,256 @@
|
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Copyright 2011 ThePiachu. All rights reserved.
|
||||
// Copyright 2013 Conformal Systems LLC. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec
|
||||
|
||||
// This package operates, internally, on Jacobian coordinates. For a given
|
||||
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
||||
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
||||
// calculation can be performed within the transform (as in ScalarMult and
|
||||
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
||||
// reverse the transform than to operate in affine coordinates.
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"sync"
|
||||
)
|
||||
|
||||
//TODO: examine if we need to care about EC optimization as descibed here
|
||||
// https://bitcointalk.org/index.php?topic=155054.0;all
|
||||
|
||||
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
|
||||
// interface.
|
||||
type KoblitzCurve struct {
|
||||
*elliptic.CurveParams
|
||||
q *big.Int
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
|
||||
return curve.CurveParams
|
||||
}
|
||||
|
||||
// Return boolean if the point (x,y) is on the curve.
|
||||
// Differs from normal curve algorithm since a = 0 not -3
|
||||
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
|
||||
// y² = x³ + b
|
||||
y2 := new(big.Int).Mul(y, y) //y²
|
||||
y2.Mod(y2, curve.P) //y²%P
|
||||
|
||||
x3 := new(big.Int).Mul(x, x) //x²
|
||||
x3.Mul(x3, x) //x³
|
||||
|
||||
x3.Add(x3, curve.B) //x³+B
|
||||
x3.Mod(x3, curve.P) //(x³+B)%P
|
||||
|
||||
return x3.Cmp(y2) == 0
|
||||
}
|
||||
|
||||
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
|
||||
// y are zero, it assumes that they represent the point at infinity because (0,
|
||||
// 0) is not on the any of the curves handled here.
|
||||
func zForAffine(x, y *big.Int) *big.Int {
|
||||
z := new(big.Int)
|
||||
if x.Sign() != 0 || y.Sign() != 0 {
|
||||
z.SetInt64(1)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
||||
// top of the file. If the point is ∞ it returns 0, 0.
|
||||
func (curve *KoblitzCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
||||
if z.Sign() == 0 {
|
||||
return new(big.Int), new(big.Int)
|
||||
}
|
||||
|
||||
zinv := new(big.Int).ModInverse(z, curve.P)
|
||||
zinvsq := new(big.Int).Mul(zinv, zinv)
|
||||
|
||||
xOut = new(big.Int).Mul(x, zinvsq)
|
||||
xOut.Mod(xOut, curve.P)
|
||||
zinvsq.Mul(zinvsq, zinv)
|
||||
yOut = new(big.Int).Mul(y, zinvsq)
|
||||
yOut.Mod(yOut, curve.P)
|
||||
return
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||||
z1 := zForAffine(x1, y1)
|
||||
z2 := zForAffine(x2, y2)
|
||||
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
|
||||
}
|
||||
|
||||
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
||||
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
||||
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
||||
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
|
||||
if z1.Sign() == 0 {
|
||||
x3.Set(x2)
|
||||
y3.Set(y2)
|
||||
z3.Set(z2)
|
||||
return x3, y3, z3
|
||||
}
|
||||
if z2.Sign() == 0 {
|
||||
x3.Set(x1)
|
||||
y3.Set(y1)
|
||||
z3.Set(z1)
|
||||
return x3, y3, z3
|
||||
}
|
||||
|
||||
z1z1 := new(big.Int).Mul(z1, z1)
|
||||
z1z1.Mod(z1z1, curve.P)
|
||||
z2z2 := new(big.Int).Mul(z2, z2)
|
||||
z2z2.Mod(z2z2, curve.P)
|
||||
|
||||
u1 := new(big.Int).Mul(x1, z2z2)
|
||||
u1.Mod(u1, curve.P)
|
||||
u2 := new(big.Int).Mul(x2, z1z1)
|
||||
u2.Mod(u2, curve.P)
|
||||
h := new(big.Int).Sub(u2, u1)
|
||||
xEqual := h.Sign() == 0
|
||||
if h.Sign() == -1 {
|
||||
h.Add(h, curve.P)
|
||||
}
|
||||
i := new(big.Int).Lsh(h, 1)
|
||||
i.Mul(i, i)
|
||||
j := new(big.Int).Mul(h, i)
|
||||
|
||||
s1 := new(big.Int).Mul(y1, z2)
|
||||
s1.Mul(s1, z2z2)
|
||||
s1.Mod(s1, curve.P)
|
||||
s2 := new(big.Int).Mul(y2, z1)
|
||||
s2.Mul(s2, z1z1)
|
||||
s2.Mod(s2, curve.P)
|
||||
r := new(big.Int).Sub(s2, s1)
|
||||
if r.Sign() == -1 {
|
||||
r.Add(r, curve.P)
|
||||
}
|
||||
yEqual := r.Sign() == 0
|
||||
if xEqual && yEqual {
|
||||
return curve.doubleJacobian(x1, y1, z1)
|
||||
}
|
||||
r.Lsh(r, 1)
|
||||
v := new(big.Int).Mul(u1, i)
|
||||
|
||||
x3.Set(r)
|
||||
x3.Mul(x3, x3)
|
||||
x3.Sub(x3, j)
|
||||
x3.Sub(x3, v)
|
||||
x3.Sub(x3, v)
|
||||
x3.Mod(x3, curve.P)
|
||||
|
||||
y3.Set(r)
|
||||
v.Sub(v, x3)
|
||||
y3.Mul(y3, v)
|
||||
s1.Mul(s1, j)
|
||||
s1.Lsh(s1, 1)
|
||||
y3.Sub(y3, s1)
|
||||
y3.Mod(y3, curve.P)
|
||||
|
||||
z3.Add(z1, z2)
|
||||
z3.Mul(z3, z3)
|
||||
z3.Sub(z3, z1z1)
|
||||
z3.Sub(z3, z2z2)
|
||||
z3.Mul(z3, h)
|
||||
z3.Mod(z3, curve.P)
|
||||
|
||||
return x3, y3, z3
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
||||
z1 := zForAffine(x1, y1)
|
||||
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
|
||||
}
|
||||
|
||||
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
||||
// returns its double, also in Jacobian form.
|
||||
func (curve *KoblitzCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||||
|
||||
a := new(big.Int).Mul(x, x) //X1²
|
||||
b := new(big.Int).Mul(y, y) //Y1²
|
||||
c := new(big.Int).Mul(b, b) //B²
|
||||
|
||||
d := new(big.Int).Add(x, b) //X1+B
|
||||
d.Mul(d, d) //(X1+B)²
|
||||
d.Sub(d, a) //(X1+B)²-A
|
||||
d.Sub(d, c) //(X1+B)²-A-C
|
||||
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
|
||||
|
||||
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
|
||||
f := new(big.Int).Mul(e, e) //E²
|
||||
|
||||
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
|
||||
x3.Sub(f, x3) //F-2*D
|
||||
x3.Mod(x3, curve.P)
|
||||
|
||||
y3 := new(big.Int).Sub(d, x3) //D-X3
|
||||
y3.Mul(e, y3) //E*(D-X3)
|
||||
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
|
||||
y3.Mod(y3, curve.P)
|
||||
|
||||
z3 := new(big.Int).Mul(y, z) //Y1*Z1
|
||||
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
|
||||
z3.Mod(z3, curve.P)
|
||||
|
||||
return x3, y3, z3
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
||||
Bz := new(big.Int).SetInt64(1)
|
||||
x, y, z := new(big.Int), new(big.Int), new(big.Int)
|
||||
|
||||
for _, byte := range k {
|
||||
for bitNum := 0; bitNum < 8; bitNum++ {
|
||||
x, y, z = curve.doubleJacobian(x, y, z)
|
||||
if byte&0x80 == 0x80 {
|
||||
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
|
||||
}
|
||||
byte <<= 1
|
||||
}
|
||||
}
|
||||
|
||||
return curve.affineFromJacobian(x, y, z)
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||||
return curve.ScalarMult(curve.Gx, curve.Gy, k)
|
||||
}
|
||||
|
||||
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
|
||||
if curve.q == nil {
|
||||
curve.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P, big.NewInt(1)), big.NewInt(4))
|
||||
}
|
||||
return curve.q
|
||||
}
|
||||
|
||||
//curve parameters taken from:
|
||||
//http://www.secg.org/collateral/sec2_final.pdf
|
||||
var initonce sync.Once
|
||||
var secp256k1 KoblitzCurve
|
||||
|
||||
func initAll() {
|
||||
initS256()
|
||||
}
|
||||
|
||||
func initS256() {
|
||||
// See SEC 2 section 2.7.1
|
||||
secp256k1.CurveParams = new(elliptic.CurveParams)
|
||||
secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
|
||||
secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
|
||||
secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
|
||||
secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
|
||||
secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
|
||||
secp256k1.BitSize = 256
|
||||
}
|
||||
|
||||
// P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
|
||||
func S256() *KoblitzCurve {
|
||||
initonce.Do(initAll)
|
||||
return &secp256k1
|
||||
}
|
301
btcec_test.go
Normal file
301
btcec_test.go
Normal file
|
@ -0,0 +1,301 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Copyright 2011 ThePiachu. All rights reserved.
|
||||
// Copyright 2013 Conformal Systems LLC. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec_test
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/rand"
|
||||
"crypto/sha1"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"github.com/conformal/btcec"
|
||||
"math/big"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestOnCurve(t *testing.T) {
|
||||
s256 := btcec.S256()
|
||||
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
|
||||
t.Errorf("FAIL S256")
|
||||
}
|
||||
}
|
||||
|
||||
type baseMultTest struct {
|
||||
k string
|
||||
x, y string
|
||||
}
|
||||
|
||||
//TODO: add more test vectors
|
||||
var s256BaseMultTests = []baseMultTest{
|
||||
{
|
||||
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
|
||||
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
|
||||
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
|
||||
},
|
||||
{
|
||||
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
|
||||
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
|
||||
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
|
||||
},
|
||||
{
|
||||
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
|
||||
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
|
||||
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
|
||||
},
|
||||
{
|
||||
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
|
||||
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
|
||||
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
|
||||
},
|
||||
{
|
||||
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
|
||||
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
|
||||
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
|
||||
},
|
||||
}
|
||||
|
||||
//TODO: test different curves as well?
|
||||
func TestBaseMult(t *testing.T) {
|
||||
s256 := btcec.S256()
|
||||
for i, e := range s256BaseMultTests {
|
||||
k, ok := new(big.Int).SetString(e.k, 16)
|
||||
if !ok {
|
||||
t.Errorf("%d: bad value for k: %s", i, e.k)
|
||||
}
|
||||
x, y := s256.ScalarBaseMult(k.Bytes())
|
||||
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
|
||||
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
|
||||
}
|
||||
if testing.Short() && i > 5 {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//TODO: test more curves?
|
||||
func BenchmarkBaseMult(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
s256 := btcec.S256()
|
||||
e := s256BaseMultTests[0] //TODO: check, used to be 25 instead of 0, but it's probably ok
|
||||
k, _ := new(big.Int).SetString(e.k, 16)
|
||||
b.StartTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
s256.ScalarBaseMult(k.Bytes())
|
||||
}
|
||||
}
|
||||
|
||||
// Test this curve's usage with the ecdsa package.
|
||||
|
||||
func testKeyGeneration(t *testing.T, c elliptic.Curve, tag string) {
|
||||
priv, err := ecdsa.GenerateKey(c, rand.Reader)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error: %s", tag, err)
|
||||
return
|
||||
}
|
||||
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
|
||||
t.Errorf("%s: public key invalid: %s", tag, err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestKeyGeneration(t *testing.T) {
|
||||
testKeyGeneration(t, btcec.S256(), "S256")
|
||||
}
|
||||
|
||||
func testSignAndVerify(t *testing.T, c elliptic.Curve, tag string) {
|
||||
priv, _ := ecdsa.GenerateKey(c, rand.Reader)
|
||||
|
||||
hashed := []byte("testing")
|
||||
r, s, err := ecdsa.Sign(rand.Reader, priv, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
if !ecdsa.Verify(&priv.PublicKey, hashed, r, s) {
|
||||
t.Errorf("%s: Verify failed", tag)
|
||||
}
|
||||
|
||||
hashed[0] ^= 0xff
|
||||
if ecdsa.Verify(&priv.PublicKey, hashed, r, s) {
|
||||
t.Errorf("%s: Verify always works!", tag)
|
||||
}
|
||||
}
|
||||
|
||||
func TestSignAndVerify(t *testing.T) {
|
||||
testSignAndVerify(t, btcec.S256(), "S256")
|
||||
}
|
||||
|
||||
func fromHex(s string) *big.Int {
|
||||
r, ok := new(big.Int).SetString(s, 16)
|
||||
if !ok {
|
||||
panic("bad hex")
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// These test vectors were taken from
|
||||
// http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsatestvectors.zip
|
||||
var testVectors = []struct {
|
||||
msg string
|
||||
Qx, Qy string
|
||||
r, s string
|
||||
ok bool
|
||||
}{
|
||||
/*
|
||||
* All of these tests are disabled since they are for P224, not sec256k1.
|
||||
* they are left here as an example of test vectors for when some *real*
|
||||
* vectors may be found.
|
||||
* - oga@conformal.com
|
||||
{
|
||||
"09626b45493672e48f3d1226a3aff3201960e577d33a7f72c7eb055302db8fe8ed61685dd036b554942a5737cd1512cdf811ee0c00e6dd2f08c69f08643be396e85dafda664801e772cdb7396868ac47b172245b41986aa2648cb77fbbfa562581be06651355a0c4b090f9d17d8f0ab6cced4e0c9d386cf465a516630f0231bd",
|
||||
"9504b5b82d97a264d8b3735e0568decabc4b6ca275bc53cbadfc1c40",
|
||||
"03426f80e477603b10dee670939623e3da91a94267fc4e51726009ed",
|
||||
"81d3ac609f9575d742028dd496450a58a60eea2dcf8b9842994916e1",
|
||||
"96a8c5f382c992e8f30ccce9af120b067ec1d74678fa8445232f75a5",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"96b2b6536f6df29be8567a72528aceeaccbaa66c66c534f3868ca9778b02faadb182e4ed34662e73b9d52ecbe9dc8e875fc05033c493108b380689ebf47e5b062e6a0cdb3dd34ce5fe347d92768d72f7b9b377c20aea927043b509c078ed2467d7113405d2ddd458811e6faf41c403a2a239240180f1430a6f4330df5d77de37",
|
||||
"851e3100368a22478a0029353045ae40d1d8202ef4d6533cfdddafd8",
|
||||
"205302ac69457dd345e86465afa72ee8c74ca97e2b0b999aec1f10c2",
|
||||
"4450c2d38b697e990721aa2dbb56578d32b4f5aeb3b9072baa955ee0",
|
||||
"e26d4b589166f7b4ba4b1c8fce823fa47aad22f8c9c396b8c6526e12",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"86778dbb4a068a01047a8d245d632f636c11d2ad350740b36fad90428b454ad0f120cb558d12ea5c8a23db595d87543d06d1ef489263d01ee529871eb68737efdb8ff85bc7787b61514bed85b7e01d6be209e0a4eb0db5c8df58a5c5bf706d76cb2bdf7800208639e05b89517155d11688236e6a47ed37d8e5a2b1e0adea338e",
|
||||
"ad5bda09d319a717c1721acd6688d17020b31b47eef1edea57ceeffc",
|
||||
"c8ce98e181770a7c9418c73c63d01494b8b80a41098c5ea50692c984",
|
||||
"de5558c257ab4134e52c19d8db3b224a1899cbd08cc508ce8721d5e9",
|
||||
"745db7af5a477e5046705c0a5eff1f52cb94a79d481f0c5a5e108ecd",
|
||||
true,
|
||||
},
|
||||
{
|
||||
"4bc6ef1958556686dab1e39c3700054a304cbd8f5928603dcd97fafd1f29e69394679b638f71c9344ce6a535d104803d22119f57b5f9477e253817a52afa9bfbc9811d6cc8c8be6b6566c6ef48b439bbb532abe30627548c598867f3861ba0b154dc1c3deca06eb28df8efd28258554b5179883a36fbb1eecf4f93ee19d41e3d",
|
||||
"cc5eea2edf964018bdc0504a3793e4d2145142caa09a72ac5fb8d3e8",
|
||||
"a48d78ae5d08aa725342773975a00d4219cf7a8029bb8cf3c17c374a",
|
||||
"67b861344b4e416d4094472faf4272f6d54a497177fbc5f9ef292836",
|
||||
"1d54f3fcdad795bf3b23408ecbac3e1321d1d66f2e4e3d05f41f7020",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"bb658732acbf3147729959eb7318a2058308b2739ec58907dd5b11cfa3ecf69a1752b7b7d806fe00ec402d18f96039f0b78dbb90a59c4414fb33f1f4e02e4089de4122cd93df5263a95be4d7084e2126493892816e6a5b4ed123cb705bf930c8f67af0fb4514d5769232a9b008a803af225160ce63f675bd4872c4c97b146e5e",
|
||||
"6234c936e27bf141fc7534bfc0a7eedc657f91308203f1dcbd642855",
|
||||
"27983d87ca785ef4892c3591ef4a944b1deb125dd58bd351034a6f84",
|
||||
"e94e05b42d01d0b965ffdd6c3a97a36a771e8ea71003de76c4ecb13f",
|
||||
"1dc6464ffeefbd7872a081a5926e9fc3e66d123f1784340ba17737e9",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"7c00be9123bfa2c4290be1d8bc2942c7f897d9a5b7917e3aabd97ef1aab890f148400a89abd554d19bec9d8ed911ce57b22fbcf6d30ca2115f13ce0a3f569a23bad39ee645f624c49c60dcfc11e7d2be24de9c905596d8f23624d63dc46591d1f740e46f982bfae453f107e80db23545782be23ce43708245896fc54e1ee5c43",
|
||||
"9f3f037282aaf14d4772edffff331bbdda845c3f65780498cde334f1",
|
||||
"8308ee5a16e3bcb721b6bc30000a0419bc1aaedd761be7f658334066",
|
||||
"6381d7804a8808e3c17901e4d283b89449096a8fba993388fa11dc54",
|
||||
"8e858f6b5b253686a86b757bad23658cda53115ac565abca4e3d9f57",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"cffc122a44840dc705bb37130069921be313d8bde0b66201aebc48add028ca131914ef2e705d6bedd19dc6cf9459bbb0f27cdfe3c50483808ffcdaffbeaa5f062e097180f07a40ef4ab6ed03fe07ed6bcfb8afeb42c97eafa2e8a8df469de07317c5e1494c41547478eff4d8c7d9f0f484ad90fedf6e1c35ee68fa73f1691601",
|
||||
"a03b88a10d930002c7b17ca6af2fd3e88fa000edf787dc594f8d4fd4",
|
||||
"e0cf7acd6ddc758e64847fe4df9915ebda2f67cdd5ec979aa57421f5",
|
||||
"387b84dcf37dc343c7d2c5beb82f0bf8bd894b395a7b894565d296c1",
|
||||
"4adc12ce7d20a89ce3925e10491c731b15ddb3f339610857a21b53b4",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"26e0e0cafd85b43d16255908ccfd1f061c680df75aba3081246b337495783052ba06c60f4a486c1591a4048bae11b4d7fec4f161d80bdc9a7b79d23e44433ed625eab280521a37f23dd3e1bdc5c6a6cfaa026f3c45cf703e76dab57add93fe844dd4cda67dc3bddd01f9152579e49df60969b10f09ce9372fdd806b0c7301866",
|
||||
"9a8983c42f2b5a87c37a00458b5970320d247f0c8a88536440173f7d",
|
||||
"15e489ec6355351361900299088cfe8359f04fe0cab78dde952be80c",
|
||||
"929a21baa173d438ec9f28d6a585a2f9abcfc0a4300898668e476dc0",
|
||||
"59a853f046da8318de77ff43f26fe95a92ee296fa3f7e56ce086c872",
|
||||
true,
|
||||
},
|
||||
{
|
||||
"1078eac124f48ae4f807e946971d0de3db3748dd349b14cca5c942560fb25401b2252744f18ad5e455d2d97ed5ae745f55ff509c6c8e64606afe17809affa855c4c4cdcaf6b69ab4846aa5624ed0687541aee6f2224d929685736c6a23906d974d3c257abce1a3fb8db5951b89ecb0cda92b5207d93f6618fd0f893c32cf6a6e",
|
||||
"d6e55820bb62c2be97650302d59d667a411956138306bd566e5c3c2b",
|
||||
"631ab0d64eaf28a71b9cbd27a7a88682a2167cee6251c44e3810894f",
|
||||
"65af72bc7721eb71c2298a0eb4eed3cec96a737cc49125706308b129",
|
||||
"bd5a987c78e2d51598dbd9c34a9035b0069c580edefdacee17ad892a",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"919deb1fdd831c23481dfdb2475dcbe325b04c34f82561ced3d2df0b3d749b36e255c4928973769d46de8b95f162b53cd666cad9ae145e7fcfba97919f703d864efc11eac5f260a5d920d780c52899e5d76f8fe66936ff82130761231f536e6a3d59792f784902c469aa897aabf9a0678f93446610d56d5e0981e4c8a563556b",
|
||||
"269b455b1024eb92d860a420f143ac1286b8cce43031562ae7664574",
|
||||
"baeb6ca274a77c44a0247e5eb12ca72bdd9a698b3f3ae69c9f1aaa57",
|
||||
"cb4ec2160f04613eb0dfe4608486091a25eb12aa4dec1afe91cfb008",
|
||||
"40b01d8cd06589481574f958b98ca08ade9d2a8fe31024375c01bb40",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"6e012361250dacf6166d2dd1aa7be544c3206a9d43464b3fcd90f3f8cf48d08ec099b59ba6fe7d9bdcfaf244120aed1695d8be32d1b1cd6f143982ab945d635fb48a7c76831c0460851a3d62b7209c30cd9c2abdbe3d2a5282a9fcde1a6f418dd23c409bc351896b9b34d7d3a1a63bbaf3d677e612d4a80fa14829386a64b33f",
|
||||
"6d2d695efc6b43b13c14111f2109608f1020e3e03b5e21cfdbc82fcd",
|
||||
"26a4859296b7e360b69cf40be7bd97ceaffa3d07743c8489fc47ca1b",
|
||||
"9a8cb5f2fdc288b7183c5b32d8e546fc2ed1ca4285eeae00c8b572ad",
|
||||
"8c623f357b5d0057b10cdb1a1593dab57cda7bdec9cf868157a79b97",
|
||||
true,
|
||||
},
|
||||
{
|
||||
"bf6bd7356a52b234fe24d25557200971fc803836f6fec3cade9642b13a8e7af10ab48b749de76aada9d8927f9b12f75a2c383ca7358e2566c4bb4f156fce1fd4e87ef8c8d2b6b1bdd351460feb22cdca0437ac10ca5e0abbbce9834483af20e4835386f8b1c96daaa41554ceee56730aac04f23a5c765812efa746051f396566",
|
||||
"14250131b2599939cf2d6bc491be80ddfe7ad9de644387ee67de2d40",
|
||||
"b5dc473b5d014cd504022043c475d3f93c319a8bdcb7262d9e741803",
|
||||
"4f21642f2201278a95339a80f75cc91f8321fcb3c9462562f6cbf145",
|
||||
"452a5f816ea1f75dee4fd514fa91a0d6a43622981966c59a1b371ff8",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"0eb7f4032f90f0bd3cf9473d6d9525d264d14c031a10acd31a053443ed5fe919d5ac35e0be77813071b4062f0b5fdf58ad5f637b76b0b305aec18f82441b6e607b44cdf6e0e3c7c57f24e6fd565e39430af4a6b1d979821ed0175fa03e3125506847654d7e1ae904ce1190ae38dc5919e257bdac2db142a6e7cd4da6c2e83770",
|
||||
"d1f342b7790a1667370a1840255ac5bbbdc66f0bc00ae977d99260ac",
|
||||
"76416cabae2de9a1000b4646338b774baabfa3db4673790771220cdb",
|
||||
"bc85e3fc143d19a7271b2f9e1c04b86146073f3fab4dda1c3b1f35ca",
|
||||
"9a5c70ede3c48d5f43307a0c2a4871934424a3303b815df4bb0f128e",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"5cc25348a05d85e56d4b03cec450128727bc537c66ec3a9fb613c151033b5e86878632249cba83adcefc6c1e35dcd31702929c3b57871cda5c18d1cf8f9650a25b917efaed56032e43b6fc398509f0d2997306d8f26675f3a8683b79ce17128e006aa0903b39eeb2f1001be65de0520115e6f919de902b32c38d691a69c58c92",
|
||||
"7e49a7abf16a792e4c7bbc4d251820a2abd22d9f2fc252a7bf59c9a6",
|
||||
"44236a8fb4791c228c26637c28ae59503a2f450d4cfb0dc42aa843b9",
|
||||
"084461b4050285a1a85b2113be76a17878d849e6bc489f4d84f15cd8",
|
||||
"079b5bddcc4d45de8dbdfd39f69817c7e5afa454a894d03ee1eaaac3",
|
||||
false,
|
||||
},
|
||||
{
|
||||
"1951533ce33afb58935e39e363d8497a8dd0442018fd96dff167b3b23d7206a3ee182a3194765df4768a3284e23b8696c199b4686e670d60c9d782f08794a4bccc05cffffbd1a12acd9eb1cfa01f7ebe124da66ecff4599ea7720c3be4bb7285daa1a86ebf53b042bd23208d468c1b3aa87381f8e1ad63e2b4c2ba5efcf05845",
|
||||
"31945d12ebaf4d81f02be2b1768ed80784bf35cf5e2ff53438c11493",
|
||||
"a62bebffac987e3b9d3ec451eb64c462cdf7b4aa0b1bbb131ceaa0a4",
|
||||
"bc3c32b19e42b710bca5c6aaa128564da3ddb2726b25f33603d2af3c",
|
||||
"ed1a719cc0c507edc5239d76fe50e2306c145ad252bd481da04180c0",
|
||||
false,
|
||||
},
|
||||
*/
|
||||
}
|
||||
|
||||
func TestVectors(t *testing.T) {
|
||||
sha := sha1.New()
|
||||
|
||||
for i, test := range testVectors {
|
||||
pub := ecdsa.PublicKey{
|
||||
Curve: btcec.S256(),
|
||||
X: fromHex(test.Qx),
|
||||
Y: fromHex(test.Qy),
|
||||
}
|
||||
msg, _ := hex.DecodeString(test.msg)
|
||||
sha.Reset()
|
||||
sha.Write(msg)
|
||||
hashed := sha.Sum(nil)
|
||||
r := fromHex(test.r)
|
||||
s := fromHex(test.s)
|
||||
if fuck := ecdsa.Verify(&pub, hashed, r, s); fuck != test.ok {
|
||||
//t.Errorf("%d: bad result %v %v", i, pub, hashed)
|
||||
t.Errorf("%d: bad result %v instead of %v", i, fuck,
|
||||
test.ok)
|
||||
}
|
||||
if testing.Short() {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
17
cov_report.sh
Normal file
17
cov_report.sh
Normal file
|
@ -0,0 +1,17 @@
|
|||
#!/bin/sh
|
||||
|
||||
# This script uses gocov to generate a test coverage report.
|
||||
# The gocov tool my be obtained with the following command:
|
||||
# go get github.com/axw/gocov/gocov
|
||||
#
|
||||
# It will be installed to $GOPATH/bin, so ensure that location is in your $PATH.
|
||||
|
||||
# Check for gocov.
|
||||
type gocov >/dev/null 2>&1
|
||||
if [ $? -ne 0 ]; then
|
||||
echo >&2 "This script requires the gocov tool."
|
||||
echo >&2 "You may obtain it with the following command:"
|
||||
echo >&2 "go get github.com/axw/gocov/gocov"
|
||||
exit 1
|
||||
fi
|
||||
gocov test | gocov report
|
34
doc.go
Normal file
34
doc.go
Normal file
|
@ -0,0 +1,34 @@
|
|||
// Copyright (c) 2013 Conformal Systems LLC.
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/*
|
||||
Package btcec implements support for the elliptic curves needed for bitcoin.
|
||||
|
||||
Bitcoin uses elliptic curve cryptography using koblitz curves
|
||||
(specifically secp256k1) for cryptographic functions. See
|
||||
http://www.secg.org/collateral/sec2_final.pdf for details on the
|
||||
standard.
|
||||
|
||||
This package provides the data structures and functions implementing the
|
||||
crypto/elliptic Curve interface in order to permit using these curves
|
||||
with the standard crypto/ecdsa package provided with go. Helper
|
||||
functionality is provided to parse signatures and public keys from
|
||||
standard formats. It was designed for use with btcd, but should be
|
||||
general enough for other uses of elliptic curve crypto. It was based on
|
||||
some initial work by ThePiachu.
|
||||
|
||||
Usage
|
||||
|
||||
To verify a secp256k1 signature the following may be done:
|
||||
|
||||
import crypto/ecdsa
|
||||
|
||||
pubKey, err := btcec.ParsePubKey(pkStr, btcec.S256())
|
||||
|
||||
signature, err := btcec.ParseSignature(sigStr, btcec.S256())
|
||||
|
||||
ok := ecdsa.Verify(pubKey, message, signature.R, signature.S)
|
||||
|
||||
*/
|
||||
package btcec
|
89
pubkey.go
Normal file
89
pubkey.go
Normal file
|
@ -0,0 +1,89 @@
|
|||
// Copyright (c) 2013 Conformal Systems LLC.
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"fmt"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func isOdd(a *big.Int) bool {
|
||||
return a.Bit(0) == 1
|
||||
}
|
||||
|
||||
const (
|
||||
pubkeyCompressed byte = 0x2 // y_bit + x coord
|
||||
pubkeyUncompressed = 0x4 // x coord + y coord
|
||||
pubkeyHybrid = 0x6 // y_bit + x coord + y coord
|
||||
)
|
||||
|
||||
// Parse a public key for a koblitz curve from a bytestring into a
|
||||
// ecdsa.Publickey, verifying that it is valid.
|
||||
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *ecdsa.PublicKey, err error) {
|
||||
pubkey := ecdsa.PublicKey{}
|
||||
pubkey.Curve = curve
|
||||
|
||||
format := pubKeyStr[0]
|
||||
ybit := (format & 0x1) == 0x1
|
||||
format &= ^byte(0x1)
|
||||
|
||||
switch len(pubKeyStr) {
|
||||
case 65: // normal public key
|
||||
if format != pubkeyUncompressed && format != pubkeyHybrid {
|
||||
return nil, fmt.Errorf("invalid magic in pubkey str: "+
|
||||
"%d", pubKeyStr[0])
|
||||
}
|
||||
|
||||
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
|
||||
pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
|
||||
// hybrid keys have extra information, make use of it.
|
||||
if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
|
||||
return nil, fmt.Errorf("ybit doesn't match oddness")
|
||||
}
|
||||
case 33: // compressed public key
|
||||
// format is 0x2 | solution, <X coordinate>
|
||||
// solution determines which solution of the curve we use.
|
||||
/// y^2 = x^3 + Curve.B
|
||||
if format != pubkeyCompressed {
|
||||
return nil, fmt.Errorf("invalid magic in compressed "+
|
||||
"pubkey string: %d", pubKeyStr[0])
|
||||
}
|
||||
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
|
||||
// Y = +-sqrt(x^3 + B)
|
||||
x3 := new(big.Int).Mul(pubkey.X, pubkey.X)
|
||||
x3.Mul(x3, pubkey.X)
|
||||
x3.Add(x3, pubkey.Curve.Params().B)
|
||||
|
||||
// now calculate sqrt mod p of x2 + B
|
||||
// This code used to do a full sqrt based on tonelli/shanks,
|
||||
// but this was replaced by the algorithms referenced in
|
||||
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
|
||||
y := new(big.Int).Exp(x3, curve.QPlus1Div4(), pubkey.Curve.Params().P)
|
||||
|
||||
if ybit != isOdd(y) {
|
||||
y.Sub(pubkey.Curve.Params().P, y)
|
||||
}
|
||||
if ybit != isOdd(y) {
|
||||
return nil, fmt.Errorf("ybit doesn't match oddness")
|
||||
}
|
||||
|
||||
pubkey.Y = y
|
||||
default: // wrong!
|
||||
return nil, fmt.Errorf("invalid pub key length %d",
|
||||
len(pubKeyStr))
|
||||
}
|
||||
|
||||
if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
|
||||
return nil, fmt.Errorf("pubkey X parameter is >= to P")
|
||||
}
|
||||
if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
|
||||
return nil, fmt.Errorf("pubkey Y parameter is >= to P")
|
||||
}
|
||||
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
|
||||
return nil, fmt.Errorf("pubkey isn't on secp265k1 curve")
|
||||
}
|
||||
return &pubkey, nil
|
||||
}
|
97
pubkey_test.go
Normal file
97
pubkey_test.go
Normal file
|
@ -0,0 +1,97 @@
|
|||
// Copyright (c) 2013 Conformal Systems LLC.
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec_test
|
||||
|
||||
import (
|
||||
"github.com/conformal/btcec"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type pubKeyTest struct {
|
||||
name string
|
||||
key []byte
|
||||
isValid bool
|
||||
}
|
||||
|
||||
var pubKeyTests = []pubKeyTest{
|
||||
// pubkey from bitcoin blockchain tx
|
||||
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
|
||||
pubKeyTest{
|
||||
name: "uncompressed ok",
|
||||
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
|
||||
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
|
||||
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
|
||||
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
|
||||
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
|
||||
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
|
||||
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
|
||||
0xb4, 0x12, 0xa3,
|
||||
},
|
||||
isValid: true,
|
||||
},
|
||||
pubKeyTest{
|
||||
name: "uncompressed x changed",
|
||||
key: []byte{0x04, 0x15, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
|
||||
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
|
||||
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
|
||||
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
|
||||
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
|
||||
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
|
||||
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
|
||||
0xb4, 0x12, 0xa3,
|
||||
},
|
||||
isValid: false,
|
||||
},
|
||||
pubKeyTest{
|
||||
name: "uncompressed y changed",
|
||||
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
|
||||
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
|
||||
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
|
||||
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
|
||||
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
|
||||
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
|
||||
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
|
||||
0xb4, 0x12, 0xa4,
|
||||
},
|
||||
isValid: false,
|
||||
},
|
||||
// from tx 0b09c51c51ff762f00fb26217269d2a18e77a4fa87d69b3c363ab4df16543f20
|
||||
pubKeyTest{
|
||||
name: "compressed ok (ybit = 0)",
|
||||
key: []byte{0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
|
||||
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
|
||||
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
|
||||
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
|
||||
},
|
||||
isValid: true,
|
||||
},
|
||||
// from tx fdeb8e72524e8dab0da507ddbaf5f88fe4a933eb10a66bc4745bb0aa11ea393c
|
||||
pubKeyTest{
|
||||
name: "compressed ok (ybit = 1)",
|
||||
key: []byte{0x03, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
|
||||
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
|
||||
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
|
||||
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
|
||||
},
|
||||
isValid: true,
|
||||
},
|
||||
}
|
||||
|
||||
func TestPubKeys(t *testing.T) {
|
||||
for _, test := range pubKeyTests {
|
||||
_, err := btcec.ParsePubKey(test.key, btcec.S256())
|
||||
if err != nil {
|
||||
if test.isValid {
|
||||
t.Errorf("%s pubkey failed when shouldn't %v",
|
||||
test.name, err)
|
||||
}
|
||||
continue
|
||||
}
|
||||
if !test.isValid {
|
||||
t.Errorf("%s counted as valid when it should fail",
|
||||
test.name)
|
||||
}
|
||||
}
|
||||
}
|
110
signature.go
Normal file
110
signature.go
Normal file
|
@ -0,0 +1,110 @@
|
|||
// Copyright (c) 2013 Conformal Systems LLC.
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
type Signature struct {
|
||||
R *big.Int
|
||||
S *big.Int
|
||||
}
|
||||
|
||||
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
|
||||
// Originally this code used encoding/asn1 in order to parse the
|
||||
// signature, but a number of problems were found with this approach.
|
||||
// Despite the fact that signatures are stored as DER, the difference
|
||||
// between go's idea of a bignum (and that they have sign) doesn't agree
|
||||
// with the openssl one (where they do not). The above is true as of
|
||||
// Go 1.1. In the end it was simpler to rewrite the code to explicitly
|
||||
// understand the format which is this:
|
||||
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
|
||||
// <length of S> <S>.
|
||||
|
||||
signature := &Signature{}
|
||||
|
||||
// minimal message is when both numbers are 1 bytes. adding up to:
|
||||
// 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
|
||||
if len(sigStr) < 8 {
|
||||
return nil, errors.New("malformed signature: too short")
|
||||
}
|
||||
// 0x30
|
||||
index := 0
|
||||
if sigStr[index] != 0x30 {
|
||||
return nil, errors.New("malformed signature: no header magic")
|
||||
}
|
||||
index++
|
||||
// length of remaining message
|
||||
siglen := sigStr[index]
|
||||
if int(siglen+2) > len(sigStr) {
|
||||
return nil, errors.New("malformed signature: no header magic")
|
||||
}
|
||||
index++
|
||||
// trim the slice we're working on so we only look at what matters.
|
||||
sigStr = sigStr[:siglen+2]
|
||||
|
||||
// 0x02
|
||||
if sigStr[index] != 0x02 {
|
||||
return nil,
|
||||
errors.New("malformed signature: no 1st int marker")
|
||||
}
|
||||
index++
|
||||
|
||||
// Length of signature R.
|
||||
rLen := int(sigStr[index])
|
||||
if rLen < 0 || rLen > len(sigStr)-index {
|
||||
return nil, errors.New("malformed signature: bogus R length")
|
||||
}
|
||||
index++
|
||||
|
||||
// Then R itself.
|
||||
signature.R = new(big.Int).SetBytes(sigStr[index : index+rLen])
|
||||
index += rLen
|
||||
// 0x02
|
||||
if sigStr[index] != 0x02 {
|
||||
return nil, errors.New("malformed signature: no 2nd int marker")
|
||||
}
|
||||
index++
|
||||
|
||||
// Length of signature S.
|
||||
sLen := int(sigStr[index])
|
||||
if sLen < 0 || sLen > len(sigStr)-index {
|
||||
return nil, errors.New("malformed signature: bogus S length")
|
||||
}
|
||||
index++
|
||||
|
||||
// Then S itself.
|
||||
signature.S = new(big.Int).SetBytes(sigStr[index : index+sLen])
|
||||
index += sLen
|
||||
|
||||
// sanity check length parsing
|
||||
if index != len(sigStr) {
|
||||
return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
|
||||
index, len(sigStr))
|
||||
}
|
||||
|
||||
// Verify also checks this, but we can be more sure that we parsed
|
||||
// correctly if we verify here too.
|
||||
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
|
||||
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
|
||||
if signature.R.Sign() != 1 {
|
||||
return nil, errors.New("Signature R isn't 1 or more")
|
||||
}
|
||||
if signature.S.Sign() != 1 {
|
||||
return nil, errors.New("Signature S isn't 1 or more")
|
||||
}
|
||||
if signature.R.Cmp(curve.Params().N) >= 0 {
|
||||
return nil, errors.New("Signature R is >= curve.N")
|
||||
}
|
||||
if signature.S.Cmp(curve.Params().N) >= 0 {
|
||||
return nil, errors.New("Signature S is >= curve.N")
|
||||
}
|
||||
|
||||
return signature, nil
|
||||
}
|
20
test_coverage.txt
Normal file
20
test_coverage.txt
Normal file
|
@ -0,0 +1,20 @@
|
|||
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.doubleJacobian 100.00% (21/21)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.ScalarMult 100.00% (9/9)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.IsOnCurve 100.00% (7/7)
|
||||
github.com/conformal/btcec/btcec.go initS256 100.00% (7/7)
|
||||
github.com/conformal/btcec/btcec.go zForAffine 100.00% (4/4)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.QPlus1Div4 100.00% (3/3)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.Add 100.00% (3/3)
|
||||
github.com/conformal/btcec/btcec.go S256 100.00% (2/2)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.Params 100.00% (1/1)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.ScalarBaseMult 100.00% (1/1)
|
||||
github.com/conformal/btcec/btcec.go initAll 100.00% (1/1)
|
||||
github.com/conformal/btcec/pubkey.go isOdd 100.00% (1/1)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.addJacobian 91.67% (55/60)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.affineFromJacobian 90.00% (9/10)
|
||||
github.com/conformal/btcec/pubkey.go ParsePubKey 78.12% (25/32)
|
||||
github.com/conformal/btcec/signature.go ParseSignature 0.00% (0/41)
|
||||
github.com/conformal/btcec/btcec.go KoblitzCurve.Double 0.00% (0/2)
|
||||
github.com/conformal/btcec ------------------------------- 72.68% (149/205)
|
||||
|
Loading…
Reference in a new issue