Initial implementation.

This commit is contained in:
Dave Collins 2013-06-13 13:27:23 -05:00
parent a2c10e34d9
commit 6e9cc57131
10 changed files with 1045 additions and 1 deletions

49
LICENSE Normal file
View file

@ -0,0 +1,49 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Copyright (c) 2011 ThePiachu. All rights reserved.
Copyright (c) 2013 Conformal Systems LLC. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
* The name of ThePiachu may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------
ISC License
Copyright (c) 2013 Conformal Systems LLC.
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View file

@ -1,4 +1,75 @@
btcec
=====
Package btcec implements the Koblitz elliptic curve secp256k1 used by bitcoin.
Package btcec implements elliptic curve cryptography using koblitz curves
(secp256k1 only for now). It is designed so that it may be used with the
standard crypto/ecdsa packages provided with go. There is a test suite
which is aiming to reach 100% code coverage. See `test_coverage.txt`
for the current coverage (using gocov). On a UNIX-like OS, the script
`cov_report.sh` can be used to generate the report. Package btcec uses
work from ThePiachu which is licensed under the same terms as Go. The
Conformal original is licensed under the liberal ISC license.
This package is one of the core packages from btcd, an alternative full-node
implementation of bitcoin which is under active development by Conformal.
Although it was primarily written for btcd, this package has intentionally been
designed so it can be used as a standalone package for any projects needing to
use secp256k1 elliptic curve cryptography.
## Sample Use
```Go
import crypto/ecdsa
pubKey, err := btcec.ParsePubKey(pkStr, btcec.S256())
signature, err := btcec.ParseSignature(sigStr, btcec.S256())
ok := ecdsa.Verify(pubKey, message, signature.R, signature.S)
```
## Documentation
Full `go doc` style documentation for the project can be viewed online without
installing this package by using the GoDoc site
[here](http://godoc.org/github.com/conformal/btcec).
You can also view the documentation locally once the package is installed with
the `godoc` tool by running `godoc -http=":6060"` and pointing your browser to
http://localhost:6060/pkg/github.com/conformal/btcec
## Installation
```bash
$ go get github.com/conformal/btcec
```
## TODO
- Increase test coverage to 100%
## GPG Verification Key
All official release tags are signed by Conformal so users can ensure the code
has not been tampered with and is coming from Conformal. To verify the
signature perform the following:
- Download the public key from the Conformal website at
https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt
- Import the public key into your GPG keyring:
```bash
gpg --import GIT-GPG-KEY-conformal.txt
```
- Verify the release tag with the following command where `TAG_NAME` is a
placeholder for the specific tag:
```bash
git tag -v TAG_NAME
```
## License
Package btcec is licensed under the liberal ISC License except for
btcec.go and btcec_test.go which is under the same license as Go.

256
btcec.go Normal file
View file

@ -0,0 +1,256 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec
// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.
import (
"crypto/elliptic"
"math/big"
"sync"
)
//TODO: examine if we need to care about EC optimization as descibed here
// https://bitcointalk.org/index.php?topic=155054.0;all
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
// interface.
type KoblitzCurve struct {
*elliptic.CurveParams
q *big.Int
}
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
return curve.CurveParams
}
// Return boolean if the point (x,y) is on the curve.
// Differs from normal curve algorithm since a = 0 not -3
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y) //y²
y2.Mod(y2, curve.P) //y²%P
x3 := new(big.Int).Mul(x, x) //x²
x3.Mul(x3, x) //x³
x3.Add(x3, curve.B) //x³+B
x3.Mod(x3, curve.P) //(x³+B)%P
return x3.Cmp(y2) == 0
}
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
z := new(big.Int)
if x.Sign() != 0 || y.Sign() != 0 {
z.SetInt64(1)
}
return z
}
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *KoblitzCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, curve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, curve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, curve.P)
return
}
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
z1 := zForAffine(x1, y1)
z2 := zForAffine(x2, y2)
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
if z1.Sign() == 0 {
x3.Set(x2)
y3.Set(y2)
z3.Set(z2)
return x3, y3, z3
}
if z2.Sign() == 0 {
x3.Set(x1)
y3.Set(y1)
z3.Set(z1)
return x3, y3, z3
}
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, curve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, curve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, curve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, curve.P)
h := new(big.Int).Sub(u2, u1)
xEqual := h.Sign() == 0
if h.Sign() == -1 {
h.Add(h, curve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, curve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, curve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, curve.P)
}
yEqual := r.Sign() == 0
if xEqual && yEqual {
return curve.doubleJacobian(x1, y1, z1)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3.Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, curve.P)
y3.Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, curve.P)
z3.Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
z3.Sub(z3, z2z2)
z3.Mul(z3, h)
z3.Mod(z3, curve.P)
return x3, y3, z3
}
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := zForAffine(x1, y1)
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *KoblitzCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, curve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, curve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, curve.P)
return x3, y3, z3
}
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
Bz := new(big.Int).SetInt64(1)
x, y, z := new(big.Int), new(big.Int), new(big.Int)
for _, byte := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
x, y, z = curve.doubleJacobian(x, y, z)
if byte&0x80 == 0x80 {
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
byte <<= 1
}
}
return curve.affineFromJacobian(x, y, z)
}
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
if curve.q == nil {
curve.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P, big.NewInt(1)), big.NewInt(4))
}
return curve.q
}
//curve parameters taken from:
//http://www.secg.org/collateral/sec2_final.pdf
var initonce sync.Once
var secp256k1 KoblitzCurve
func initAll() {
initS256()
}
func initS256() {
// See SEC 2 section 2.7.1
secp256k1.CurveParams = new(elliptic.CurveParams)
secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
secp256k1.BitSize = 256
}
// P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
func S256() *KoblitzCurve {
initonce.Do(initAll)
return &secp256k1
}

301
btcec_test.go Normal file
View file

@ -0,0 +1,301 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec_test
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha1"
"encoding/hex"
"fmt"
"github.com/conformal/btcec"
"math/big"
"testing"
)
func TestOnCurve(t *testing.T) {
s256 := btcec.S256()
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
t.Errorf("FAIL S256")
}
}
type baseMultTest struct {
k string
x, y string
}
//TODO: add more test vectors
var s256BaseMultTests = []baseMultTest{
{
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
},
{
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
},
{
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
},
{
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
},
{
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
},
}
//TODO: test different curves as well?
func TestBaseMult(t *testing.T) {
s256 := btcec.S256()
for i, e := range s256BaseMultTests {
k, ok := new(big.Int).SetString(e.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, e.k)
}
x, y := s256.ScalarBaseMult(k.Bytes())
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
}
if testing.Short() && i > 5 {
break
}
}
}
//TODO: test more curves?
func BenchmarkBaseMult(b *testing.B) {
b.ResetTimer()
s256 := btcec.S256()
e := s256BaseMultTests[0] //TODO: check, used to be 25 instead of 0, but it's probably ok
k, _ := new(big.Int).SetString(e.k, 16)
b.StartTimer()
for i := 0; i < b.N; i++ {
s256.ScalarBaseMult(k.Bytes())
}
}
// Test this curve's usage with the ecdsa package.
func testKeyGeneration(t *testing.T, c elliptic.Curve, tag string) {
priv, err := ecdsa.GenerateKey(c, rand.Reader)
if err != nil {
t.Errorf("%s: error: %s", tag, err)
return
}
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
t.Errorf("%s: public key invalid: %s", tag, err)
}
}
func TestKeyGeneration(t *testing.T) {
testKeyGeneration(t, btcec.S256(), "S256")
}
func testSignAndVerify(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := ecdsa.GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r, s, err := ecdsa.Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if !ecdsa.Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("%s: Verify failed", tag)
}
hashed[0] ^= 0xff
if ecdsa.Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("%s: Verify always works!", tag)
}
}
func TestSignAndVerify(t *testing.T) {
testSignAndVerify(t, btcec.S256(), "S256")
}
func fromHex(s string) *big.Int {
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("bad hex")
}
return r
}
// These test vectors were taken from
// http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsatestvectors.zip
var testVectors = []struct {
msg string
Qx, Qy string
r, s string
ok bool
}{
/*
* All of these tests are disabled since they are for P224, not sec256k1.
* they are left here as an example of test vectors for when some *real*
* vectors may be found.
* - oga@conformal.com
{
"09626b45493672e48f3d1226a3aff3201960e577d33a7f72c7eb055302db8fe8ed61685dd036b554942a5737cd1512cdf811ee0c00e6dd2f08c69f08643be396e85dafda664801e772cdb7396868ac47b172245b41986aa2648cb77fbbfa562581be06651355a0c4b090f9d17d8f0ab6cced4e0c9d386cf465a516630f0231bd",
"9504b5b82d97a264d8b3735e0568decabc4b6ca275bc53cbadfc1c40",
"03426f80e477603b10dee670939623e3da91a94267fc4e51726009ed",
"81d3ac609f9575d742028dd496450a58a60eea2dcf8b9842994916e1",
"96a8c5f382c992e8f30ccce9af120b067ec1d74678fa8445232f75a5",
false,
},
{
"96b2b6536f6df29be8567a72528aceeaccbaa66c66c534f3868ca9778b02faadb182e4ed34662e73b9d52ecbe9dc8e875fc05033c493108b380689ebf47e5b062e6a0cdb3dd34ce5fe347d92768d72f7b9b377c20aea927043b509c078ed2467d7113405d2ddd458811e6faf41c403a2a239240180f1430a6f4330df5d77de37",
"851e3100368a22478a0029353045ae40d1d8202ef4d6533cfdddafd8",
"205302ac69457dd345e86465afa72ee8c74ca97e2b0b999aec1f10c2",
"4450c2d38b697e990721aa2dbb56578d32b4f5aeb3b9072baa955ee0",
"e26d4b589166f7b4ba4b1c8fce823fa47aad22f8c9c396b8c6526e12",
false,
},
{
"86778dbb4a068a01047a8d245d632f636c11d2ad350740b36fad90428b454ad0f120cb558d12ea5c8a23db595d87543d06d1ef489263d01ee529871eb68737efdb8ff85bc7787b61514bed85b7e01d6be209e0a4eb0db5c8df58a5c5bf706d76cb2bdf7800208639e05b89517155d11688236e6a47ed37d8e5a2b1e0adea338e",
"ad5bda09d319a717c1721acd6688d17020b31b47eef1edea57ceeffc",
"c8ce98e181770a7c9418c73c63d01494b8b80a41098c5ea50692c984",
"de5558c257ab4134e52c19d8db3b224a1899cbd08cc508ce8721d5e9",
"745db7af5a477e5046705c0a5eff1f52cb94a79d481f0c5a5e108ecd",
true,
},
{
"4bc6ef1958556686dab1e39c3700054a304cbd8f5928603dcd97fafd1f29e69394679b638f71c9344ce6a535d104803d22119f57b5f9477e253817a52afa9bfbc9811d6cc8c8be6b6566c6ef48b439bbb532abe30627548c598867f3861ba0b154dc1c3deca06eb28df8efd28258554b5179883a36fbb1eecf4f93ee19d41e3d",
"cc5eea2edf964018bdc0504a3793e4d2145142caa09a72ac5fb8d3e8",
"a48d78ae5d08aa725342773975a00d4219cf7a8029bb8cf3c17c374a",
"67b861344b4e416d4094472faf4272f6d54a497177fbc5f9ef292836",
"1d54f3fcdad795bf3b23408ecbac3e1321d1d66f2e4e3d05f41f7020",
false,
},
{
"bb658732acbf3147729959eb7318a2058308b2739ec58907dd5b11cfa3ecf69a1752b7b7d806fe00ec402d18f96039f0b78dbb90a59c4414fb33f1f4e02e4089de4122cd93df5263a95be4d7084e2126493892816e6a5b4ed123cb705bf930c8f67af0fb4514d5769232a9b008a803af225160ce63f675bd4872c4c97b146e5e",
"6234c936e27bf141fc7534bfc0a7eedc657f91308203f1dcbd642855",
"27983d87ca785ef4892c3591ef4a944b1deb125dd58bd351034a6f84",
"e94e05b42d01d0b965ffdd6c3a97a36a771e8ea71003de76c4ecb13f",
"1dc6464ffeefbd7872a081a5926e9fc3e66d123f1784340ba17737e9",
false,
},
{
"7c00be9123bfa2c4290be1d8bc2942c7f897d9a5b7917e3aabd97ef1aab890f148400a89abd554d19bec9d8ed911ce57b22fbcf6d30ca2115f13ce0a3f569a23bad39ee645f624c49c60dcfc11e7d2be24de9c905596d8f23624d63dc46591d1f740e46f982bfae453f107e80db23545782be23ce43708245896fc54e1ee5c43",
"9f3f037282aaf14d4772edffff331bbdda845c3f65780498cde334f1",
"8308ee5a16e3bcb721b6bc30000a0419bc1aaedd761be7f658334066",
"6381d7804a8808e3c17901e4d283b89449096a8fba993388fa11dc54",
"8e858f6b5b253686a86b757bad23658cda53115ac565abca4e3d9f57",
false,
},
{
"cffc122a44840dc705bb37130069921be313d8bde0b66201aebc48add028ca131914ef2e705d6bedd19dc6cf9459bbb0f27cdfe3c50483808ffcdaffbeaa5f062e097180f07a40ef4ab6ed03fe07ed6bcfb8afeb42c97eafa2e8a8df469de07317c5e1494c41547478eff4d8c7d9f0f484ad90fedf6e1c35ee68fa73f1691601",
"a03b88a10d930002c7b17ca6af2fd3e88fa000edf787dc594f8d4fd4",
"e0cf7acd6ddc758e64847fe4df9915ebda2f67cdd5ec979aa57421f5",
"387b84dcf37dc343c7d2c5beb82f0bf8bd894b395a7b894565d296c1",
"4adc12ce7d20a89ce3925e10491c731b15ddb3f339610857a21b53b4",
false,
},
{
"26e0e0cafd85b43d16255908ccfd1f061c680df75aba3081246b337495783052ba06c60f4a486c1591a4048bae11b4d7fec4f161d80bdc9a7b79d23e44433ed625eab280521a37f23dd3e1bdc5c6a6cfaa026f3c45cf703e76dab57add93fe844dd4cda67dc3bddd01f9152579e49df60969b10f09ce9372fdd806b0c7301866",
"9a8983c42f2b5a87c37a00458b5970320d247f0c8a88536440173f7d",
"15e489ec6355351361900299088cfe8359f04fe0cab78dde952be80c",
"929a21baa173d438ec9f28d6a585a2f9abcfc0a4300898668e476dc0",
"59a853f046da8318de77ff43f26fe95a92ee296fa3f7e56ce086c872",
true,
},
{
"1078eac124f48ae4f807e946971d0de3db3748dd349b14cca5c942560fb25401b2252744f18ad5e455d2d97ed5ae745f55ff509c6c8e64606afe17809affa855c4c4cdcaf6b69ab4846aa5624ed0687541aee6f2224d929685736c6a23906d974d3c257abce1a3fb8db5951b89ecb0cda92b5207d93f6618fd0f893c32cf6a6e",
"d6e55820bb62c2be97650302d59d667a411956138306bd566e5c3c2b",
"631ab0d64eaf28a71b9cbd27a7a88682a2167cee6251c44e3810894f",
"65af72bc7721eb71c2298a0eb4eed3cec96a737cc49125706308b129",
"bd5a987c78e2d51598dbd9c34a9035b0069c580edefdacee17ad892a",
false,
},
{
"919deb1fdd831c23481dfdb2475dcbe325b04c34f82561ced3d2df0b3d749b36e255c4928973769d46de8b95f162b53cd666cad9ae145e7fcfba97919f703d864efc11eac5f260a5d920d780c52899e5d76f8fe66936ff82130761231f536e6a3d59792f784902c469aa897aabf9a0678f93446610d56d5e0981e4c8a563556b",
"269b455b1024eb92d860a420f143ac1286b8cce43031562ae7664574",
"baeb6ca274a77c44a0247e5eb12ca72bdd9a698b3f3ae69c9f1aaa57",
"cb4ec2160f04613eb0dfe4608486091a25eb12aa4dec1afe91cfb008",
"40b01d8cd06589481574f958b98ca08ade9d2a8fe31024375c01bb40",
false,
},
{
"6e012361250dacf6166d2dd1aa7be544c3206a9d43464b3fcd90f3f8cf48d08ec099b59ba6fe7d9bdcfaf244120aed1695d8be32d1b1cd6f143982ab945d635fb48a7c76831c0460851a3d62b7209c30cd9c2abdbe3d2a5282a9fcde1a6f418dd23c409bc351896b9b34d7d3a1a63bbaf3d677e612d4a80fa14829386a64b33f",
"6d2d695efc6b43b13c14111f2109608f1020e3e03b5e21cfdbc82fcd",
"26a4859296b7e360b69cf40be7bd97ceaffa3d07743c8489fc47ca1b",
"9a8cb5f2fdc288b7183c5b32d8e546fc2ed1ca4285eeae00c8b572ad",
"8c623f357b5d0057b10cdb1a1593dab57cda7bdec9cf868157a79b97",
true,
},
{
"bf6bd7356a52b234fe24d25557200971fc803836f6fec3cade9642b13a8e7af10ab48b749de76aada9d8927f9b12f75a2c383ca7358e2566c4bb4f156fce1fd4e87ef8c8d2b6b1bdd351460feb22cdca0437ac10ca5e0abbbce9834483af20e4835386f8b1c96daaa41554ceee56730aac04f23a5c765812efa746051f396566",
"14250131b2599939cf2d6bc491be80ddfe7ad9de644387ee67de2d40",
"b5dc473b5d014cd504022043c475d3f93c319a8bdcb7262d9e741803",
"4f21642f2201278a95339a80f75cc91f8321fcb3c9462562f6cbf145",
"452a5f816ea1f75dee4fd514fa91a0d6a43622981966c59a1b371ff8",
false,
},
{
"0eb7f4032f90f0bd3cf9473d6d9525d264d14c031a10acd31a053443ed5fe919d5ac35e0be77813071b4062f0b5fdf58ad5f637b76b0b305aec18f82441b6e607b44cdf6e0e3c7c57f24e6fd565e39430af4a6b1d979821ed0175fa03e3125506847654d7e1ae904ce1190ae38dc5919e257bdac2db142a6e7cd4da6c2e83770",
"d1f342b7790a1667370a1840255ac5bbbdc66f0bc00ae977d99260ac",
"76416cabae2de9a1000b4646338b774baabfa3db4673790771220cdb",
"bc85e3fc143d19a7271b2f9e1c04b86146073f3fab4dda1c3b1f35ca",
"9a5c70ede3c48d5f43307a0c2a4871934424a3303b815df4bb0f128e",
false,
},
{
"5cc25348a05d85e56d4b03cec450128727bc537c66ec3a9fb613c151033b5e86878632249cba83adcefc6c1e35dcd31702929c3b57871cda5c18d1cf8f9650a25b917efaed56032e43b6fc398509f0d2997306d8f26675f3a8683b79ce17128e006aa0903b39eeb2f1001be65de0520115e6f919de902b32c38d691a69c58c92",
"7e49a7abf16a792e4c7bbc4d251820a2abd22d9f2fc252a7bf59c9a6",
"44236a8fb4791c228c26637c28ae59503a2f450d4cfb0dc42aa843b9",
"084461b4050285a1a85b2113be76a17878d849e6bc489f4d84f15cd8",
"079b5bddcc4d45de8dbdfd39f69817c7e5afa454a894d03ee1eaaac3",
false,
},
{
"1951533ce33afb58935e39e363d8497a8dd0442018fd96dff167b3b23d7206a3ee182a3194765df4768a3284e23b8696c199b4686e670d60c9d782f08794a4bccc05cffffbd1a12acd9eb1cfa01f7ebe124da66ecff4599ea7720c3be4bb7285daa1a86ebf53b042bd23208d468c1b3aa87381f8e1ad63e2b4c2ba5efcf05845",
"31945d12ebaf4d81f02be2b1768ed80784bf35cf5e2ff53438c11493",
"a62bebffac987e3b9d3ec451eb64c462cdf7b4aa0b1bbb131ceaa0a4",
"bc3c32b19e42b710bca5c6aaa128564da3ddb2726b25f33603d2af3c",
"ed1a719cc0c507edc5239d76fe50e2306c145ad252bd481da04180c0",
false,
},
*/
}
func TestVectors(t *testing.T) {
sha := sha1.New()
for i, test := range testVectors {
pub := ecdsa.PublicKey{
Curve: btcec.S256(),
X: fromHex(test.Qx),
Y: fromHex(test.Qy),
}
msg, _ := hex.DecodeString(test.msg)
sha.Reset()
sha.Write(msg)
hashed := sha.Sum(nil)
r := fromHex(test.r)
s := fromHex(test.s)
if fuck := ecdsa.Verify(&pub, hashed, r, s); fuck != test.ok {
//t.Errorf("%d: bad result %v %v", i, pub, hashed)
t.Errorf("%d: bad result %v instead of %v", i, fuck,
test.ok)
}
if testing.Short() {
break
}
}
}

17
cov_report.sh Normal file
View file

@ -0,0 +1,17 @@
#!/bin/sh
# This script uses gocov to generate a test coverage report.
# The gocov tool my be obtained with the following command:
# go get github.com/axw/gocov/gocov
#
# It will be installed to $GOPATH/bin, so ensure that location is in your $PATH.
# Check for gocov.
type gocov >/dev/null 2>&1
if [ $? -ne 0 ]; then
echo >&2 "This script requires the gocov tool."
echo >&2 "You may obtain it with the following command:"
echo >&2 "go get github.com/axw/gocov/gocov"
exit 1
fi
gocov test | gocov report

34
doc.go Normal file
View file

@ -0,0 +1,34 @@
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
/*
Package btcec implements support for the elliptic curves needed for bitcoin.
Bitcoin uses elliptic curve cryptography using koblitz curves
(specifically secp256k1) for cryptographic functions. See
http://www.secg.org/collateral/sec2_final.pdf for details on the
standard.
This package provides the data structures and functions implementing the
crypto/elliptic Curve interface in order to permit using these curves
with the standard crypto/ecdsa package provided with go. Helper
functionality is provided to parse signatures and public keys from
standard formats. It was designed for use with btcd, but should be
general enough for other uses of elliptic curve crypto. It was based on
some initial work by ThePiachu.
Usage
To verify a secp256k1 signature the following may be done:
import crypto/ecdsa
pubKey, err := btcec.ParsePubKey(pkStr, btcec.S256())
signature, err := btcec.ParseSignature(sigStr, btcec.S256())
ok := ecdsa.Verify(pubKey, message, signature.R, signature.S)
*/
package btcec

89
pubkey.go Normal file
View file

@ -0,0 +1,89 @@
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/ecdsa"
"fmt"
"math/big"
)
func isOdd(a *big.Int) bool {
return a.Bit(0) == 1
}
const (
pubkeyCompressed byte = 0x2 // y_bit + x coord
pubkeyUncompressed = 0x4 // x coord + y coord
pubkeyHybrid = 0x6 // y_bit + x coord + y coord
)
// Parse a public key for a koblitz curve from a bytestring into a
// ecdsa.Publickey, verifying that it is valid.
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *ecdsa.PublicKey, err error) {
pubkey := ecdsa.PublicKey{}
pubkey.Curve = curve
format := pubKeyStr[0]
ybit := (format & 0x1) == 0x1
format &= ^byte(0x1)
switch len(pubKeyStr) {
case 65: // normal public key
if format != pubkeyUncompressed && format != pubkeyHybrid {
return nil, fmt.Errorf("invalid magic in pubkey str: "+
"%d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
// hybrid keys have extra information, make use of it.
if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
return nil, fmt.Errorf("ybit doesn't match oddness")
}
case 33: // compressed public key
// format is 0x2 | solution, <X coordinate>
// solution determines which solution of the curve we use.
/// y^2 = x^3 + Curve.B
if format != pubkeyCompressed {
return nil, fmt.Errorf("invalid magic in compressed "+
"pubkey string: %d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
// Y = +-sqrt(x^3 + B)
x3 := new(big.Int).Mul(pubkey.X, pubkey.X)
x3.Mul(x3, pubkey.X)
x3.Add(x3, pubkey.Curve.Params().B)
// now calculate sqrt mod p of x2 + B
// This code used to do a full sqrt based on tonelli/shanks,
// but this was replaced by the algorithms referenced in
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
y := new(big.Int).Exp(x3, curve.QPlus1Div4(), pubkey.Curve.Params().P)
if ybit != isOdd(y) {
y.Sub(pubkey.Curve.Params().P, y)
}
if ybit != isOdd(y) {
return nil, fmt.Errorf("ybit doesn't match oddness")
}
pubkey.Y = y
default: // wrong!
return nil, fmt.Errorf("invalid pub key length %d",
len(pubKeyStr))
}
if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, fmt.Errorf("pubkey X parameter is >= to P")
}
if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, fmt.Errorf("pubkey Y parameter is >= to P")
}
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
return nil, fmt.Errorf("pubkey isn't on secp265k1 curve")
}
return &pubkey, nil
}

97
pubkey_test.go Normal file
View file

@ -0,0 +1,97 @@
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"github.com/conformal/btcec"
"testing"
)
type pubKeyTest struct {
name string
key []byte
isValid bool
}
var pubKeyTests = []pubKeyTest{
// pubkey from bitcoin blockchain tx
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
pubKeyTest{
name: "uncompressed ok",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: true,
},
pubKeyTest{
name: "uncompressed x changed",
key: []byte{0x04, 0x15, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
pubKeyTest{
name: "uncompressed y changed",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa4,
},
isValid: false,
},
// from tx 0b09c51c51ff762f00fb26217269d2a18e77a4fa87d69b3c363ab4df16543f20
pubKeyTest{
name: "compressed ok (ybit = 0)",
key: []byte{0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
isValid: true,
},
// from tx fdeb8e72524e8dab0da507ddbaf5f88fe4a933eb10a66bc4745bb0aa11ea393c
pubKeyTest{
name: "compressed ok (ybit = 1)",
key: []byte{0x03, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
isValid: true,
},
}
func TestPubKeys(t *testing.T) {
for _, test := range pubKeyTests {
_, err := btcec.ParsePubKey(test.key, btcec.S256())
if err != nil {
if test.isValid {
t.Errorf("%s pubkey failed when shouldn't %v",
test.name, err)
}
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
}
}
}

110
signature.go Normal file
View file

@ -0,0 +1,110 @@
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/elliptic"
"errors"
"fmt"
"math/big"
)
type Signature struct {
R *big.Int
S *big.Int
}
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
// Originally this code used encoding/asn1 in order to parse the
// signature, but a number of problems were found with this approach.
// Despite the fact that signatures are stored as DER, the difference
// between go's idea of a bignum (and that they have sign) doesn't agree
// with the openssl one (where they do not). The above is true as of
// Go 1.1. In the end it was simpler to rewrite the code to explicitly
// understand the format which is this:
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
// <length of S> <S>.
signature := &Signature{}
// minimal message is when both numbers are 1 bytes. adding up to:
// 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
if len(sigStr) < 8 {
return nil, errors.New("malformed signature: too short")
}
// 0x30
index := 0
if sigStr[index] != 0x30 {
return nil, errors.New("malformed signature: no header magic")
}
index++
// length of remaining message
siglen := sigStr[index]
if int(siglen+2) > len(sigStr) {
return nil, errors.New("malformed signature: no header magic")
}
index++
// trim the slice we're working on so we only look at what matters.
sigStr = sigStr[:siglen+2]
// 0x02
if sigStr[index] != 0x02 {
return nil,
errors.New("malformed signature: no 1st int marker")
}
index++
// Length of signature R.
rLen := int(sigStr[index])
if rLen < 0 || rLen > len(sigStr)-index {
return nil, errors.New("malformed signature: bogus R length")
}
index++
// Then R itself.
signature.R = new(big.Int).SetBytes(sigStr[index : index+rLen])
index += rLen
// 0x02
if sigStr[index] != 0x02 {
return nil, errors.New("malformed signature: no 2nd int marker")
}
index++
// Length of signature S.
sLen := int(sigStr[index])
if sLen < 0 || sLen > len(sigStr)-index {
return nil, errors.New("malformed signature: bogus S length")
}
index++
// Then S itself.
signature.S = new(big.Int).SetBytes(sigStr[index : index+sLen])
index += sLen
// sanity check length parsing
if index != len(sigStr) {
return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
index, len(sigStr))
}
// Verify also checks this, but we can be more sure that we parsed
// correctly if we verify here too.
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
if signature.R.Sign() != 1 {
return nil, errors.New("Signature R isn't 1 or more")
}
if signature.S.Sign() != 1 {
return nil, errors.New("Signature S isn't 1 or more")
}
if signature.R.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("Signature R is >= curve.N")
}
if signature.S.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("Signature S is >= curve.N")
}
return signature, nil
}

20
test_coverage.txt Normal file
View file

@ -0,0 +1,20 @@
github.com/conformal/btcec/btcec.go KoblitzCurve.doubleJacobian 100.00% (21/21)
github.com/conformal/btcec/btcec.go KoblitzCurve.ScalarMult 100.00% (9/9)
github.com/conformal/btcec/btcec.go KoblitzCurve.IsOnCurve 100.00% (7/7)
github.com/conformal/btcec/btcec.go initS256 100.00% (7/7)
github.com/conformal/btcec/btcec.go zForAffine 100.00% (4/4)
github.com/conformal/btcec/btcec.go KoblitzCurve.QPlus1Div4 100.00% (3/3)
github.com/conformal/btcec/btcec.go KoblitzCurve.Add 100.00% (3/3)
github.com/conformal/btcec/btcec.go S256 100.00% (2/2)
github.com/conformal/btcec/btcec.go KoblitzCurve.Params 100.00% (1/1)
github.com/conformal/btcec/btcec.go KoblitzCurve.ScalarBaseMult 100.00% (1/1)
github.com/conformal/btcec/btcec.go initAll 100.00% (1/1)
github.com/conformal/btcec/pubkey.go isOdd 100.00% (1/1)
github.com/conformal/btcec/btcec.go KoblitzCurve.addJacobian 91.67% (55/60)
github.com/conformal/btcec/btcec.go KoblitzCurve.affineFromJacobian 90.00% (9/10)
github.com/conformal/btcec/pubkey.go ParsePubKey 78.12% (25/32)
github.com/conformal/btcec/signature.go ParseSignature 0.00% (0/41)
github.com/conformal/btcec/btcec.go KoblitzCurve.Double 0.00% (0/2)
github.com/conformal/btcec ------------------------------- 72.68% (149/205)