txscript: Rename Script to Engine.

This commit renames the Script type to Engine to better reflect its
purpose.  It also renames the NewScript function to NewEngine to match.

This is being done because name Script for the engine is confusing since
it implies it is an actual script rather than the execution environment
for the script.  It also paves the way for eventually supplying a
ParsedScript type which will be less likely to be confused with the
execution environment.

While moving the code, some additional variable names and comments have
been updated to better match the style used throughout the rest of the
code base.  In addition, an attempt has been made to use consistent naming
of the engine as 'vm' instead of using different variables names as it was
previously.

Finally, the relevant engine code has been moved into a new file named
engine.go and related tests moved to engine_test.go.
This commit is contained in:
Dave Collins 2015-04-20 15:28:00 -05:00
parent 0f8d90086a
commit 8dd7412a84
10 changed files with 997 additions and 980 deletions

View file

@ -83,8 +83,8 @@ out:
// Create a new script engine for the script pair.
sigScript := txIn.SignatureScript
pkScript := originMsgTx.TxOut[originTxIndex].PkScript
engine, err := txscript.NewScript(pkScript,
txVI.tx.MsgTx(), txVI.txInIndex, v.flags)
vm, err := txscript.NewEngine(pkScript, txVI.tx.MsgTx(),
txVI.txInIndex, v.flags)
if err != nil {
str := fmt.Sprintf("failed to parse input "+
"%s:%d which references output %s:%d - "+
@ -98,7 +98,7 @@ out:
}
// Execute the script pair.
if err := engine.Execute(); err != nil {
if err := vm.Execute(); err != nil {
str := fmt.Sprintf("failed to validate input "+
"%s:%d which references output %s:%d - "+
"%v (input script bytes %x, prev output "+

550
txscript/engine.go Normal file
View file

@ -0,0 +1,550 @@
// Copyright (c) 2013-2015 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"fmt"
"math/big"
"github.com/btcsuite/btcd/wire"
)
// ScriptFlags is a bitmask defining additional operations or
// tests that will be done when executing a Script.
type ScriptFlags uint32
const (
// ScriptBip16 defines whether the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
ScriptBip16 ScriptFlags = 1 << iota
// ScriptStrictMultiSig defines whether to verify the stack item
// used by CHECKMULTISIG is zero length.
ScriptStrictMultiSig
// ScriptDiscourageUpgradableNops defines whether to verify that
// NOP1 through NOP10 are reserved for future soft-fork upgrades. This
// flag must not be used for consensus critical code nor applied to
// blocks as this flag is only for stricter standard transaction
// checks. This flag is only applied when the above opcodes are
// executed.
ScriptDiscourageUpgradableNops
// ScriptVerifyCleanStack defines that the stack must contain only
// one stack element after evaluation and that the element must be
// true if interpreted as a boolean. This is rule 6 of BIP0062.
// This flag should never be used without the ScriptBip16 flag.
ScriptVerifyCleanStack
// ScriptVerifyDERSignatures defines that signatures are required
// to compily with the DER format.
ScriptVerifyDERSignatures
// ScriptVerifyLowS defines that signtures are required to comply with
// the DER format and whose S value is <= order / 2. This is rule 5
// of BIP0062.
ScriptVerifyLowS
// ScriptVerifyMinimalData defines that signatures must use the smallest
// push operator. This is both rules 3 and 4 of BIP0062.
ScriptVerifyMinimalData
// ScriptVerifySigPushOnly defines that signature scripts must contain
// only pushed data. This is rule 2 of BIP0062.
ScriptVerifySigPushOnly
// ScriptVerifyStrictEncoding defines that signature scripts and
// public keys must follow the strict encoding requirements.
ScriptVerifyStrictEncoding
// StandardVerifyFlags are the script flags which are used when
// executing transaction scripts to enforce additional checks which
// are required for the script to be considered standard. These checks
// help reduce issues related to transaction malleability as well as
// allow pay-to-script hash transactions. Note these flags are
// different than what is required for the consensus rules in that they
// are more strict.
//
// TODO: This definition does not belong here. It belongs in a policy
// package.
StandardVerifyFlags = ScriptBip16 |
ScriptVerifyDERSignatures |
ScriptVerifyStrictEncoding |
ScriptVerifyMinimalData |
ScriptStrictMultiSig |
ScriptDiscourageUpgradableNops |
ScriptVerifyCleanStack
)
// Engine is the virtual machine that executes scripts.
type Engine struct {
scripts [][]parsedOpcode
scriptIdx int
scriptOff int
lastcodesep int
dstack Stack // data stack
astack Stack // alt stack
tx wire.MsgTx
txIdx int
condStack []int
numOps int
bip16 bool // treat execution as pay-to-script-hash
strictMultiSig bool // verify multisig stack item is zero length
discourageUpgradableNops bool // NOP1 to NOP10 are reserved for future soft-fork upgrades
verifyStrictEncoding bool // verify strict encoding of signatures
verifyCleanStack bool // verify stack is clean after script evaluation
verifyDERSignatures bool // verify signatures comply with the DER format
verifyLowS bool // verify signatures comply with the DER format and have an S value <= halforder
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// Execute will execute all script in the script engine and return either nil
// for successful validation or an error if one occurred.
func (vm *Engine) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := vm.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = vm.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if vm.dstack.Depth() != 0 {
dstr = "Stack:\n" + vm.dstack.String()
}
if vm.astack.Depth() != 0 {
astr = "AltStack:\n" + vm.astack.String()
}
return dstr + astr
}))
}
return vm.CheckErrorCondition(true)
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (vm *Engine) CheckErrorCondition(finalScript bool) error {
// Check we are actually done. if pc is past the end of script array
// then we have run out of scripts to run.
if vm.scriptIdx < len(vm.scripts) {
return ErrStackScriptUnfinished
}
if finalScript && vm.verifyCleanStack && vm.dstack.Depth() != 1 {
return ErrStackCleanStack
} else if vm.dstack.Depth() < 1 {
return ErrStackEmptyStack
}
v, err := vm.dstack.PopBool()
if err != nil {
return err
}
if v == false {
// log interesting data.
log.Tracef("%v", newLogClosure(func() string {
dis0, _ := vm.DisasmScript(0)
dis1, _ := vm.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
}))
return ErrStackScriptFailed
}
return nil
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the curent has ended. Step
// will return true in the case that the last opcode was successfully executed.
// if an error is returned then the result of calling Step or any other method
// is undefined.
func (vm *Engine) Step() (done bool, err error) {
// verify that it is pointing to a valid script address
err = vm.validPC()
if err != nil {
return true, err
}
opcode := vm.scripts[vm.scriptIdx][vm.scriptOff]
err = opcode.exec(vm)
if err != nil {
return true, err
}
if vm.dstack.Depth()+vm.astack.Depth() > maxStackSize {
return false, ErrStackOverflow
}
// prepare for next instruction
vm.scriptOff++
if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
// Illegal to have an `if' that straddles two scripts.
if err == nil && len(vm.condStack) != 1 {
return false, ErrStackMissingEndif
}
// alt stack doesn't persist.
_ = vm.astack.DropN(vm.astack.Depth())
vm.numOps = 0 // number of ops is per script.
vm.scriptOff = 0
if vm.scriptIdx == 0 && vm.bip16 {
vm.scriptIdx++
vm.savedFirstStack = vm.GetStack()
} else if vm.scriptIdx == 1 && vm.bip16 {
// Put us past the end for CheckErrorCondition()
vm.scriptIdx++
// We check script ran ok, if so then we pull
// the script out of the first stack and executre that.
err := vm.CheckErrorCondition(false)
if err != nil {
return false, err
}
script := vm.savedFirstStack[len(vm.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
vm.scripts = append(vm.scripts, pops)
// Set stack to be the stack from first script
// minus the script itself
vm.SetStack(vm.savedFirstStack[:len(vm.savedFirstStack)-1])
} else {
vm.scriptIdx++
}
// there are zero length scripts in the wild
if vm.scriptIdx < len(vm.scripts) && vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
vm.scriptIdx++
}
vm.lastcodesep = 0
if vm.scriptIdx >= len(vm.scripts) {
return true, nil
}
}
return false, nil
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (vm *Engine) curPC() (script int, off int, err error) {
err = vm.validPC()
if err != nil {
return 0, 0, err
}
return vm.scriptIdx, vm.scriptOff, nil
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (vm *Engine) validPC() error {
if vm.scriptIdx >= len(vm.scripts) {
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", vm.scriptIdx, vm.scriptOff, len(vm.scripts))
}
if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
return fmt.Errorf("Past input scripts %v:%v %v:%04d", vm.scriptIdx, vm.scriptOff, vm.scriptIdx, len(vm.scripts[vm.scriptIdx]))
}
return nil
}
// DisasmScript returns the disassembly string for the script at offset
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
func (vm *Engine) DisasmScript(idx int) (string, error) {
if idx >= len(vm.scripts) {
return "", ErrStackInvalidIndex
}
var disstr string
for i := range vm.scripts[idx] {
disstr = disstr + vm.disasm(idx, i) + "\n"
}
return disstr, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (vm *Engine) DisasmPC() (string, error) {
scriptIdx, scriptOff, err := vm.curPC()
if err != nil {
return "", err
}
return vm.disasm(scriptIdx, scriptOff), nil
}
// disasm is a helper member to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. it does no error checking and leaves that
// to the caller to provide a valid offse.
func (vm *Engine) disasm(scriptIdx int, scriptOff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptIdx, scriptOff,
vm.scripts[scriptIdx][scriptOff].print(false))
}
// subScript will return the script since the last OP_CODESEPARATOR
func (vm *Engine) subScript() []parsedOpcode {
return vm.scripts[vm.scriptIdx][vm.lastcodesep:]
}
// checkHashTypeEncoding returns whether or not the passed hashtype adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkHashTypeEncoding(hashType SigHashType) error {
if !vm.verifyStrictEncoding {
return nil
}
sigHashType := hashType & ^SigHashAnyOneCanPay
if sigHashType < SigHashAll || sigHashType > SigHashSingle {
return fmt.Errorf("invalid hashtype: 0x%x\n", hashType)
}
return nil
}
// checkPubKeyEncoding returns whether or not the passed public key adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkPubKeyEncoding(pubKey []byte) error {
if !vm.verifyStrictEncoding {
return nil
}
if len(pubKey) == 33 && (pubKey[0] == 0x02 || pubKey[0] == 0x03) {
// Compressed
return nil
}
if len(pubKey) == 65 && pubKey[0] == 0x04 {
// Uncompressed
return nil
}
return ErrStackInvalidPubKey
}
// checkSignatureEncoding returns whether or not the passed signature adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkSignatureEncoding(sig []byte) error {
if !vm.verifyDERSignatures && !vm.verifyLowS && !vm.verifyStrictEncoding {
return nil
}
if len(sig) < 8 {
// Too short
return fmt.Errorf("malformed signature: too short: %d < 8",
len(sig))
}
if len(sig) > 72 {
// Too long
return fmt.Errorf("malformed signature: too long: %d > 72",
len(sig))
}
if sig[0] != 0x30 {
// Wrong type
return fmt.Errorf("malformed signature: format has wrong type: 0x%x",
sig[0])
}
if int(sig[1]) != len(sig)-2 {
// Invalid length
return fmt.Errorf("malformed signature: bad length: %d != %d",
sig[1], len(sig)-2)
}
rLen := int(sig[3])
// Make sure S is inside the signature
if rLen+5 > len(sig) {
return fmt.Errorf("malformed signature: S out of bounds")
}
sLen := int(sig[rLen+5])
// The length of the elements does not match
// the length of the signature
if rLen+sLen+6 != len(sig) {
return fmt.Errorf("malformed signature: invalid R length")
}
// R elements must be integers
if sig[2] != 0x02 {
return fmt.Errorf("malformed signature: missing first integer marker")
}
// Zero-length integers are not allowed for R
if rLen == 0 {
return fmt.Errorf("malformed signature: R length is zero")
}
// R must not be negative
if sig[4]&0x80 != 0 {
return fmt.Errorf("malformed signature: R value is negative")
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if rLen > 1 && sig[4] == 0x00 && sig[5]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid R value")
}
// S elements must be integers
if sig[rLen+4] != 0x02 {
return fmt.Errorf("malformed signature: missing second integer marker")
}
// Zero-length integers are not allowed for S
if sLen == 0 {
return fmt.Errorf("malformed signature: S length is zero")
}
// S must not be negative
if sig[rLen+6]&0x80 != 0 {
return fmt.Errorf("malformed signature: S value is negative")
}
// Null bytes at the start of S are not allowed, unless S would
// otherwise be interpreted as a negative number.
if sLen > 1 && sig[rLen+6] == 0x00 && sig[rLen+7]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid S value")
}
// Verify the S value is <= halforder.
if vm.verifyLowS {
sValue := new(big.Int).SetBytes(sig[rLen+6 : rLen+6+sLen])
if sValue.Cmp(halfOrder) > 0 {
return ErrStackInvalidLowSSignature
}
}
return nil
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *Stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ = stack.PeekByteArray(i)
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *Stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (vm *Engine) GetStack() [][]byte {
return getStack(&vm.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (vm *Engine) SetStack(data [][]byte) {
setStack(&vm.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (vm *Engine) GetAltStack() [][]byte {
return getStack(&vm.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (vm *Engine) SetAltStack(data [][]byte) {
setStack(&vm.astack, data)
}
// NewEngine returns a new script engine for the provided public key script,
// transaction, and input index. The flags modify the behavior of the script
// engine according to the description provided by each flag.
func NewEngine(scriptPubKey []byte, tx *wire.MsgTx, txIdx int, flags ScriptFlags) (*Engine, error) {
if txIdx < 0 || txIdx >= len(tx.TxIn) {
return nil, ErrInvalidIndex
}
scriptSig := tx.TxIn[txIdx].SignatureScript
var vm Engine
if flags&ScriptVerifySigPushOnly != 0 && !IsPushOnlyScript(scriptSig) {
return nil, ErrStackNonPushOnly
}
scripts := [][]byte{scriptSig, scriptPubKey}
vm.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
if len(scr) > maxScriptSize {
return nil, ErrStackLongScript
}
var err error
vm.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
// If the first scripts(s) are empty, must start on later ones.
if i == 0 && len(scr) == 0 {
// This could end up seeing an invalid initial pc if
// all scripts were empty. However, that is an invalid
// case and should fail.
vm.scriptIdx = i + 1
}
}
// Parse flags.
if flags&ScriptBip16 == ScriptBip16 && isScriptHash(vm.scripts[1]) {
// if we are pay to scripthash then we only accept input
// scripts that push data
if !isPushOnly(vm.scripts[0]) {
return nil, ErrStackP2SHNonPushOnly
}
vm.bip16 = true
}
if flags&ScriptStrictMultiSig == ScriptStrictMultiSig {
vm.strictMultiSig = true
}
if flags&ScriptDiscourageUpgradableNops == ScriptDiscourageUpgradableNops {
vm.discourageUpgradableNops = true
}
if flags&ScriptVerifyStrictEncoding == ScriptVerifyStrictEncoding {
vm.verifyStrictEncoding = true
}
if flags&ScriptVerifyDERSignatures == ScriptVerifyDERSignatures {
vm.verifyDERSignatures = true
}
if flags&ScriptVerifyMinimalData == ScriptVerifyMinimalData {
vm.dstack.verifyMinimalData = true
vm.astack.verifyMinimalData = true
}
if flags&ScriptVerifyCleanStack == ScriptVerifyCleanStack {
if flags&ScriptBip16 != ScriptBip16 {
return nil, ErrInvalidFlags
}
vm.verifyCleanStack = true
}
if flags&ScriptVerifyLowS == ScriptVerifyLowS {
vm.verifyLowS = true
}
vm.tx = *tx
vm.txIdx = txIdx
vm.condStack = []int{OpCondTrue}
return &vm, nil
}

173
txscript/engine_test.go Normal file
View file

@ -0,0 +1,173 @@
// Copyright (c) 2013-2015 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript_test
import (
"testing"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
)
// TestBadPC sets the pc to a deliberately bad result then confirms that Step()
// and Disasm fail correctly.
func TestBadPC(t *testing.T) {
t.Parallel()
type pcTest struct {
script, off int
}
pcTests := []pcTest{
{
script: 2,
off: 0,
},
{
script: 0,
off: 2,
},
}
// tx with almost empty scripts.
tx := &wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{
{
PreviousOutPoint: wire.OutPoint{
Hash: wire.ShaHash([32]byte{
0xc9, 0x97, 0xa5, 0xe5,
0x6e, 0x10, 0x41, 0x02,
0xfa, 0x20, 0x9c, 0x6a,
0x85, 0x2d, 0xd9, 0x06,
0x60, 0xa2, 0x0b, 0x2d,
0x9c, 0x35, 0x24, 0x23,
0xed, 0xce, 0x25, 0x85,
0x7f, 0xcd, 0x37, 0x04,
}),
Index: 0,
},
SignatureScript: []uint8{txscript.OP_NOP},
Sequence: 4294967295,
},
},
TxOut: []*wire.TxOut{
{
Value: 1000000000,
PkScript: []byte{},
},
},
LockTime: 0,
}
pkScript := []byte{txscript.OP_NOP}
for _, test := range pcTests {
vm, err := txscript.NewEngine(pkScript, tx, 0, 0)
if err != nil {
t.Errorf("Failed to create script: %v", err)
}
// set to after all scripts
vm.TstSetPC(test.script, test.off)
_, err = vm.Step()
if err == nil {
t.Errorf("Step with invalid pc (%v) succeeds!", test)
continue
}
_, err = vm.DisasmPC()
if err == nil {
t.Errorf("DisasmPC with invalid pc (%v) succeeds!",
test)
}
}
}
// TestCheckErrorCondition tests the execute early test in CheckErrorCondition()
// since most code paths are tested elsewhere.
func TestCheckErrorCondition(t *testing.T) {
t.Parallel()
// tx with almost empty scripts.
tx := &wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{
{
PreviousOutPoint: wire.OutPoint{
Hash: wire.ShaHash([32]byte{
0xc9, 0x97, 0xa5, 0xe5,
0x6e, 0x10, 0x41, 0x02,
0xfa, 0x20, 0x9c, 0x6a,
0x85, 0x2d, 0xd9, 0x06,
0x60, 0xa2, 0x0b, 0x2d,
0x9c, 0x35, 0x24, 0x23,
0xed, 0xce, 0x25, 0x85,
0x7f, 0xcd, 0x37, 0x04,
}),
Index: 0,
},
SignatureScript: []uint8{},
Sequence: 4294967295,
},
},
TxOut: []*wire.TxOut{
{
Value: 1000000000,
PkScript: []byte{},
},
},
LockTime: 0,
}
pkScript := []byte{
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_TRUE,
}
vm, err := txscript.NewEngine(pkScript, tx, 0, 0)
if err != nil {
t.Errorf("failed to create script: %v", err)
}
for i := 0; i < len(pkScript)-1; i++ {
done, err := vm.Step()
if err != nil {
t.Errorf("failed to step %dth time: %v", i, err)
return
}
if done {
t.Errorf("finshed early on %dth time", i)
return
}
err = vm.CheckErrorCondition(false)
if err != txscript.ErrStackScriptUnfinished {
t.Errorf("got unexepected error %v on %dth iteration",
err, i)
return
}
}
done, err := vm.Step()
if err != nil {
t.Errorf("final step failed %v", err)
return
}
if !done {
t.Errorf("final step isn't done!")
return
}
err = vm.CheckErrorCondition(false)
if err != nil {
t.Errorf("unexpected error %v on final check", err)
}
}

View file

@ -164,13 +164,13 @@ func ExampleSignTxOutput() {
flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures |
txscript.ScriptStrictMultiSig |
txscript.ScriptDiscourageUpgradableNops
s, err := txscript.NewScript(originTx.TxOut[0].PkScript, redeemTx, 0,
vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0,
flags)
if err != nil {
fmt.Println(err)
return
}
if err := s.Execute(); err != nil {
if err := vm.Execute(); err != nil {
fmt.Println(err)
return
}

View file

@ -79,11 +79,9 @@ func TestCheckPubKeyEncoding(t *testing.T) {
isValid: false,
},
}
s := Script{
verifyStrictEncoding: true,
}
vm := Engine{verifyStrictEncoding: true}
for _, test := range tests {
err := s.checkPubKeyEncoding(test.key)
err := vm.checkPubKeyEncoding(test.key)
if err != nil && test.isValid {
t.Errorf("checkSignatureEncoding test '%s' failed "+
"when it should have succeeded: %v", test.name,
@ -339,11 +337,9 @@ func TestCheckSignatureEncoding(t *testing.T) {
},
}
s := Script{
verifyStrictEncoding: true,
}
vm := Engine{verifyStrictEncoding: true}
for _, test := range tests {
err := s.checkSignatureEncoding(test.sig)
err := vm.checkSignatureEncoding(test.sig)
if err != nil && test.isValid {
t.Errorf("checkSignatureEncoding test '%s' failed "+
"when it should have succeeded: %v", test.name,
@ -375,9 +371,9 @@ func TstRemoveOpcodeByData(pkscript []byte, data []byte) ([]byte, error) {
// TestSetPC allows the test modules to set the program counter to whatever they
// want.
func (s *Script) TstSetPC(script, off int) {
s.scriptidx = script
s.scriptoff = off
func (vm *Engine) TstSetPC(script, off int) {
vm.scriptIdx = script
vm.scriptOff = off
}
// Internal tests for opcodde parsing with bad data templates.

File diff suppressed because it is too large Load diff

View file

@ -507,9 +507,9 @@ func TestScripts(t *testing.T) {
flags = txscript.ScriptVerifyDERSignatures
}
mockTx.TxOut[0].PkScript = test.script
engine, err := txscript.NewScript(test.script, mockTx, 0, flags)
vm, err := txscript.NewEngine(test.script, mockTx, 0, flags)
if err == nil {
err = engine.Execute()
err = vm.Execute()
}
if test.shouldFail != nil {
@ -4283,7 +4283,7 @@ func testOpcode(t *testing.T, test *detailedTest) {
tx.TxOut[0].PkScript = test.script
engine, err := txscript.NewScript(tx.TxOut[0].PkScript, tx, 0, 0)
vm, err := txscript.NewEngine(tx.TxOut[0].PkScript, tx, 0, 0)
if err != nil {
if err != test.expectedReturn {
t.Errorf("Error return not expected %s: %v %v",
@ -4292,8 +4292,8 @@ func testOpcode(t *testing.T, test *detailedTest) {
}
return
}
engine.SetStack(test.before)
engine.SetAltStack(test.altbefore)
vm.SetStack(test.before)
vm.SetAltStack(test.altbefore)
// test disassembly engine.
// pc is at start of script 1, so check that DisasmScript matches
@ -4302,7 +4302,7 @@ func testOpcode(t *testing.T, test *detailedTest) {
// disassemble.
var disScript, disPC string
if test.disassembly != "" {
dis0, err := engine.DisasmScript(0)
dis0, err := vm.DisasmScript(0)
if err != nil {
t.Errorf("%s: failed to disassemble script0: %v",
test.name, err)
@ -4311,12 +4311,12 @@ func testOpcode(t *testing.T, test *detailedTest) {
t.Errorf("%s: disassembly of empty script gave \"%s\"",
test.name, dis0)
}
disScript, err = engine.DisasmScript(1)
disScript, err = vm.DisasmScript(1)
if err != nil {
t.Errorf("%s: failed to disassemble script: %v",
test.name, err)
}
_, err = engine.DisasmScript(2)
_, err = vm.DisasmScript(2)
if err != txscript.ErrStackInvalidIndex {
t.Errorf("%s: got unexpected error for invalid "+
"disassembly index: \"%v\"", test.name, err)
@ -4326,7 +4326,7 @@ func testOpcode(t *testing.T, test *detailedTest) {
done := false
for !done {
if test.disassembly != "" {
disCurPC, err := engine.DisasmPC()
disCurPC, err := vm.DisasmPC()
if err != nil {
t.Errorf("failed to disassemble pc for %s: %v",
test.name, err)
@ -4334,7 +4334,7 @@ func testOpcode(t *testing.T, test *detailedTest) {
disPC += disCurPC + "\n"
}
done, err = engine.Step()
done, err = vm.Step()
if err != nil {
if err != test.expectedReturn {
t.Errorf("Error return not expected %s: %v %v",
@ -4357,12 +4357,12 @@ func testOpcode(t *testing.T, test *detailedTest) {
}
}
after := engine.GetStack()
after := vm.GetStack()
if !stacksEqual(after, test.after) {
t.Errorf("Stacks not equal after %s:\ngot:\n%vexp:\n%v",
test.name, after, test.after)
}
altafter := engine.GetAltStack()
altafter := vm.GetAltStack()
if !stacksEqual(altafter, test.altafter) {
t.Errorf("AltStacks not equal after %s:\n got:\n%vexp:\n%v",
test.name, altafter, test.altafter)
@ -4428,7 +4428,7 @@ func TestSigOps(t *testing.T) {
// A basic test of GetPreciseSigOpCount for most opcodes, we do this by
// running the same test for every one of the detailed tests with a fake
// sigscript. Sicne disassembly errors are always parse errors, and so are
// sigscript. Since disassembly errors are always parse errors, and so are
// sigops count errors we use the same error code.
// While this isn't as precise as using full transaction scripts, this gives
// us coverage over a wider range of opcodes. See script_test.go for tests

View file

@ -201,9 +201,9 @@ func TestScriptInvalidTests(t *testing.T) {
continue
}
tx := createSpendingTx(scriptSig, scriptPubKey)
s, err := NewScript(scriptPubKey, tx, 0, flags)
vm, err := NewEngine(scriptPubKey, tx, 0, flags)
if err == nil {
if err := s.Execute(); err == nil {
if err := vm.Execute(); err == nil {
t.Errorf("%s test succeeded when it "+
"should have failed\n", name)
}
@ -255,12 +255,12 @@ func TestScriptValidTests(t *testing.T) {
continue
}
tx := createSpendingTx(scriptSig, scriptPubKey)
s, err := NewScript(scriptPubKey, tx, 0, flags)
vm, err := NewEngine(scriptPubKey, tx, 0, flags)
if err != nil {
t.Errorf("%s failed to create script: %v", name, err)
continue
}
err = s.Execute()
err = vm.Execute()
if err != nil {
t.Errorf("%s failed to execute: %v", name, err)
continue
@ -398,12 +398,12 @@ testloop:
// These are meant to fail, so as soon as the first
// input fails the transaction has failed. (some of the
// test txns have good inputs, too..
s, err := NewScript(pkScript, tx.MsgTx(), k, flags)
vm, err := NewEngine(pkScript, tx.MsgTx(), k, flags)
if err != nil {
continue testloop
}
err = s.Execute()
err = vm.Execute()
if err != nil {
continue testloop
}
@ -539,14 +539,14 @@ testloop:
k, i, test)
continue testloop
}
s, err := NewScript(pkScript, tx.MsgTx(), k, flags)
vm, err := NewEngine(pkScript, tx.MsgTx(), k, flags)
if err != nil {
t.Errorf("test (%d:%v:%d) failed to create "+
"script: %v", i, test, k, err)
continue
}
err = s.Execute()
err = vm.Execute()
if err != nil {
t.Errorf("test (%d:%v:%d) failed to execute: "+
"%v", i, test, k, err)

View file

@ -228,28 +228,6 @@ func (t ScriptClass) String() string {
return scriptClassToName[t]
}
// Script is the virtual machine that executes scripts.
type Script struct {
scripts [][]parsedOpcode
scriptidx int
scriptoff int
lastcodesep int
dstack Stack // data stack
astack Stack // alt stack
tx wire.MsgTx
txidx int
condStack []int
numOps int
bip16 bool // treat execution as pay-to-script-hash
strictMultiSig bool // verify multisig stack item is zero length
discourageUpgradableNops bool // NOP1 to NOP10 are reserved for future soft-fork upgrades
verifyStrictEncoding bool // verify strict encoding of signatures
verifyCleanStack bool // verify stack is clean after script evaluation
verifyDERSignatures bool // verify signatures comply with the DER format
verifyLowS bool // verify signatures comply with the DER format and have an S value <= halforder
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// isSmallInt returns whether or not the opcode is considered a small integer,
// which is an OP_0, or OP_1 through OP_16.
func isSmallInt(op *opcode) bool {
@ -367,134 +345,6 @@ func IsPushOnlyScript(script []byte) bool {
return isPushOnly(pops)
}
// checkHashTypeEncoding returns whether or not the passed hashtype adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkHashTypeEncoding(hashType SigHashType) error {
if !s.verifyStrictEncoding {
return nil
}
sigHashType := hashType & ^SigHashAnyOneCanPay
if sigHashType < SigHashAll || sigHashType > SigHashSingle {
return fmt.Errorf("invalid hashtype: 0x%x\n", hashType)
}
return nil
}
// checkPubKeyEncoding returns whether or not the passed public key adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkPubKeyEncoding(pubKey []byte) error {
if !s.verifyStrictEncoding {
return nil
}
if len(pubKey) == 33 && (pubKey[0] == 0x02 || pubKey[0] == 0x03) {
// Compressed
return nil
}
if len(pubKey) == 65 && pubKey[0] == 0x04 {
// Uncompressed
return nil
}
return ErrStackInvalidPubKey
}
// checkSignatureEncoding returns whether or not the passed signature adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkSignatureEncoding(sig []byte) error {
if !s.verifyDERSignatures && !s.verifyLowS && !s.verifyStrictEncoding {
return nil
}
if len(sig) < 8 {
// Too short
return fmt.Errorf("malformed signature: too short: %d < 8",
len(sig))
}
if len(sig) > 72 {
// Too long
return fmt.Errorf("malformed signature: too long: %d > 72",
len(sig))
}
if sig[0] != 0x30 {
// Wrong type
return fmt.Errorf("malformed signature: format has wrong type: 0x%x",
sig[0])
}
if int(sig[1]) != len(sig)-2 {
// Invalid length
return fmt.Errorf("malformed signature: bad length: %d != %d",
sig[1], len(sig)-2)
}
rLen := int(sig[3])
// Make sure S is inside the signature
if rLen+5 > len(sig) {
return fmt.Errorf("malformed signature: S out of bounds")
}
sLen := int(sig[rLen+5])
// The length of the elements does not match
// the length of the signature
if rLen+sLen+6 != len(sig) {
return fmt.Errorf("malformed signature: invalid R length")
}
// R elements must be integers
if sig[2] != 0x02 {
return fmt.Errorf("malformed signature: missing first integer marker")
}
// Zero-length integers are not allowed for R
if rLen == 0 {
return fmt.Errorf("malformed signature: R length is zero")
}
// R must not be negative
if sig[4]&0x80 != 0 {
return fmt.Errorf("malformed signature: R value is negative")
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if rLen > 1 && sig[4] == 0x00 && sig[5]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid R value")
}
// S elements must be integers
if sig[rLen+4] != 0x02 {
return fmt.Errorf("malformed signature: missing second integer marker")
}
// Zero-length integers are not allowed for S
if sLen == 0 {
return fmt.Errorf("malformed signature: S length is zero")
}
// S must not be negative
if sig[rLen+6]&0x80 != 0 {
return fmt.Errorf("malformed signature: S value is negative")
}
// Null bytes at the start of S are not allowed, unless S would
// otherwise be interpreted as a negative number.
if sLen > 1 && sig[rLen+6] == 0x00 && sig[rLen+7]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid S value")
}
// Verify the S value is <= halforder.
if s.verifyLowS {
sValue := new(big.Int).SetBytes(sig[rLen+6 : rLen+6+sLen])
if sValue.Cmp(halfOrder) > 0 {
return ErrStackInvalidLowSSignature
}
}
return nil
}
// canonicalPush returns true if the object is either not a push instruction
// or the push instruction contained wherein is matches the canonical form
// or using the smallest instruction to do the job. False otherwise.
@ -635,350 +485,6 @@ func unparseScript(pops []parsedOpcode) ([]byte, error) {
return script, nil
}
// ScriptFlags is a bitmask defining additional operations or
// tests that will be done when executing a Script.
type ScriptFlags uint32
const (
// ScriptBip16 defines whether the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
ScriptBip16 ScriptFlags = 1 << iota
// ScriptStrictMultiSig defines whether to verify the stack item
// used by CHECKMULTISIG is zero length.
ScriptStrictMultiSig
// ScriptDiscourageUpgradableNops defines whether to verify that
// NOP1 through NOP10 are reserved for future soft-fork upgrades. This
// flag must not be used for consensus critical code nor applied to
// blocks as this flag is only for stricter standard transaction
// checks. This flag is only applied when the above opcodes are
// executed.
ScriptDiscourageUpgradableNops
// ScriptVerifyCleanStack defines that the stack must contain only
// one stack element after evaluation and that the element must be
// true if interpreted as a boolean. This is rule 6 of BIP0062.
// This flag should never be used without the ScriptBip16 flag.
ScriptVerifyCleanStack
// ScriptVerifyDERSignatures defines that signatures are required
// to compily with the DER format.
ScriptVerifyDERSignatures
// ScriptVerifyLowS defines that signtures are required to comply with
// the DER format and whose S value is <= order / 2. This is rule 5
// of BIP0062.
ScriptVerifyLowS
// ScriptVerifyMinimalData defines that signatures must use the smallest
// push operator. This is both rules 3 and 4 of BIP0062.
ScriptVerifyMinimalData
// ScriptVerifySigPushOnly defines that signature scripts must contain
// only pushed data. This is rule 2 of BIP0062.
ScriptVerifySigPushOnly
// ScriptVerifyStrictEncoding defines that signature scripts and
// public keys must follow the strict encoding requirements.
ScriptVerifyStrictEncoding
// StandardVerifyFlags are the script flags which are used when
// executing transaction scripts to enforce additional checks which
// are required for the script to be considered standard. These checks
// help reduce issues related to transaction malleability as well as
// allow pay-to-script hash transactions. Note these flags are
// different than what is required for the consensus rules in that they
// are more strict.
//
// TODO: These flags do not belong here. These flags belong in a
// policy package.
StandardVerifyFlags = ScriptBip16 |
ScriptVerifyDERSignatures |
ScriptVerifyStrictEncoding |
ScriptVerifyMinimalData |
ScriptStrictMultiSig |
ScriptDiscourageUpgradableNops |
ScriptVerifyCleanStack
)
// NewScript returns a new script engine for the provided tx and input idx with
// with a pubkeyscript scriptPubKey. If bip16 is true then it will be treated as
// if the bip16 threshhold has passed and thus pay-to-script hash transactions
// will be fully validated.
func NewScript(scriptPubKey []byte, tx *wire.MsgTx, txidx int, flags ScriptFlags) (*Script, error) {
if txidx < 0 || txidx >= len(tx.TxIn) {
return nil, ErrInvalidIndex
}
scriptSig := tx.TxIn[txidx].SignatureScript
var m Script
if flags&ScriptVerifySigPushOnly == ScriptVerifySigPushOnly && !IsPushOnlyScript(scriptSig) {
return nil, ErrStackNonPushOnly
}
scripts := [][]byte{scriptSig, scriptPubKey}
m.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
if len(scr) > maxScriptSize {
return nil, ErrStackLongScript
}
var err error
m.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
// If the first scripts(s) are empty, must start on later ones.
if i == 0 && len(scr) == 0 {
// This could end up seeing an invalid initial pc if
// all scripts were empty. However, that is an invalid
// case and should fail.
m.scriptidx = i + 1
}
}
// Parse flags.
if flags&ScriptBip16 == ScriptBip16 && isScriptHash(m.scripts[1]) {
// if we are pay to scripthash then we only accept input
// scripts that push data
if !isPushOnly(m.scripts[0]) {
return nil, ErrStackP2SHNonPushOnly
}
m.bip16 = true
}
if flags&ScriptStrictMultiSig == ScriptStrictMultiSig {
m.strictMultiSig = true
}
if flags&ScriptDiscourageUpgradableNops == ScriptDiscourageUpgradableNops {
m.discourageUpgradableNops = true
}
if flags&ScriptVerifyStrictEncoding == ScriptVerifyStrictEncoding {
m.verifyStrictEncoding = true
}
if flags&ScriptVerifyDERSignatures == ScriptVerifyDERSignatures {
m.verifyDERSignatures = true
}
if flags&ScriptVerifyMinimalData == ScriptVerifyMinimalData {
m.dstack.verifyMinimalData = true
m.astack.verifyMinimalData = true
}
if flags&ScriptVerifyCleanStack == ScriptVerifyCleanStack {
if flags&ScriptBip16 != ScriptBip16 {
return nil, ErrInvalidFlags
}
m.verifyCleanStack = true
}
if flags&ScriptVerifyLowS == ScriptVerifyLowS {
m.verifyLowS = true
}
m.tx = *tx
m.txidx = txidx
m.condStack = []int{OpCondTrue}
return &m, nil
}
// Execute will execute all script in the script engine and return either nil
// for successful validation or an error if one occurred.
func (s *Script) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := s.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = s.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if s.dstack.Depth() != 0 {
dstr = "Stack:\n" + s.dstack.String()
}
if s.astack.Depth() != 0 {
astr = "AltStack:\n" + s.astack.String()
}
return dstr + astr
}))
}
return s.CheckErrorCondition(true)
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (s *Script) CheckErrorCondition(finalScript bool) error {
// Check we are actually done. if pc is past the end of script array
// then we have run out of scripts to run.
if s.scriptidx < len(s.scripts) {
return ErrStackScriptUnfinished
}
if finalScript && s.verifyCleanStack && s.dstack.Depth() != 1 {
return ErrStackCleanStack
} else if s.dstack.Depth() < 1 {
return ErrStackEmptyStack
}
v, err := s.dstack.PopBool()
if err != nil {
return err
}
if v == false {
// log interesting data.
log.Tracef("%v", newLogClosure(func() string {
dis0, _ := s.DisasmScript(0)
dis1, _ := s.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
}))
return ErrStackScriptFailed
}
return nil
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the curent has ended. Step
// will return true in the case that the last opcode was successfully executed.
// if an error is returned then the result of calling Step or any other method
// is undefined.
func (s *Script) Step() (done bool, err error) {
// verify that it is pointing to a valid script address
err = s.validPC()
if err != nil {
return true, err
}
opcode := s.scripts[s.scriptidx][s.scriptoff]
err = opcode.exec(s)
if err != nil {
return true, err
}
if s.dstack.Depth()+s.astack.Depth() > maxStackSize {
return false, ErrStackOverflow
}
// prepare for next instruction
s.scriptoff++
if s.scriptoff >= len(s.scripts[s.scriptidx]) {
// Illegal to have an `if' that straddles two scripts.
if err == nil && len(s.condStack) != 1 {
return false, ErrStackMissingEndif
}
// alt stack doesn't persist.
_ = s.astack.DropN(s.astack.Depth())
s.numOps = 0 // number of ops is per script.
s.scriptoff = 0
if s.scriptidx == 0 && s.bip16 {
s.scriptidx++
s.savedFirstStack = s.GetStack()
} else if s.scriptidx == 1 && s.bip16 {
// Put us past the end for CheckErrorCondition()
s.scriptidx++
// We check script ran ok, if so then we pull
// the script out of the first stack and executre that.
err := s.CheckErrorCondition(false)
if err != nil {
return false, err
}
script := s.savedFirstStack[len(s.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
s.scripts = append(s.scripts, pops)
// Set stack to be the stack from first script
// minus the script itself
s.SetStack(s.savedFirstStack[:len(s.savedFirstStack)-1])
} else {
s.scriptidx++
}
// there are zero length scripts in the wild
if s.scriptidx < len(s.scripts) && s.scriptoff >= len(s.scripts[s.scriptidx]) {
s.scriptidx++
}
s.lastcodesep = 0
if s.scriptidx >= len(s.scripts) {
return true, nil
}
}
return false, nil
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (s *Script) curPC() (script int, off int, err error) {
err = s.validPC()
if err != nil {
return 0, 0, err
}
return s.scriptidx, s.scriptoff, nil
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (s *Script) validPC() error {
if s.scriptidx >= len(s.scripts) {
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", s.scriptidx, s.scriptoff, len(s.scripts))
}
if s.scriptoff >= len(s.scripts[s.scriptidx]) {
return fmt.Errorf("Past input scripts %v:%v %v:%04d", s.scriptidx, s.scriptoff, s.scriptidx, len(s.scripts[s.scriptidx]))
}
return nil
}
// DisasmScript returns the disassembly string for the script at offset
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
func (s *Script) DisasmScript(idx int) (string, error) {
if idx >= len(s.scripts) {
return "", ErrStackInvalidIndex
}
var disstr string
for i := range s.scripts[idx] {
disstr = disstr + s.disasm(idx, i) + "\n"
}
return disstr, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (s *Script) DisasmPC() (string, error) {
scriptidx, scriptoff, err := s.curPC()
if err != nil {
return "", err
}
return s.disasm(scriptidx, scriptoff), nil
}
// disasm is a helper member to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. it does no error checking and leaves that
// to the caller to provide a valid offse.
func (s *Script) disasm(scriptidx int, scriptoff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff,
s.scripts[scriptidx][scriptoff].print(false))
}
// subScript will return the script since the last OP_CODESEPARATOR
func (s *Script) subScript() []parsedOpcode {
return s.scripts[s.scriptidx][s.lastcodesep:]
}
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
// stream in pkscript
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
@ -1110,52 +616,6 @@ func calcScriptHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx,
return wire.DoubleSha256(wbuf.Bytes())
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *Stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ =
stack.PeekByteArray(i)
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *Stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetStack() [][]byte {
return getStack(&s.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetStack(data [][]byte) {
setStack(&s.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetAltStack() [][]byte {
return getStack(&s.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetAltStack(data [][]byte) {
setStack(&s.astack, data)
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is

View file

@ -1636,7 +1636,7 @@ func testTx(t *testing.T, test txTest) {
if test.strictSigs {
flags |= txscript.ScriptVerifyDERSignatures
}
engine, err := txscript.NewScript(test.pkScript, test.tx, test.idx,
vm, err := txscript.NewEngine(test.pkScript, test.tx, test.idx,
flags)
if err != nil {
if err != test.parseErr {
@ -1650,7 +1650,7 @@ func testTx(t *testing.T, test txTest) {
test.parseErr)
}
err = engine.Execute()
err = vm.Execute()
if err != nil {
// failed means no specified error
if test.shouldFail == true {
@ -2418,167 +2418,6 @@ func TestIsPayToScriptHash(t *testing.T) {
}
}
// This test sets the pc to a deliberately bad result then confirms that Step()
// and Disasm fail correctly.
func TestBadPC(t *testing.T) {
t.Parallel()
type pcTest struct {
script, off int
}
pcTests := []pcTest{
{
script: 2,
off: 0,
},
{
script: 0,
off: 2,
},
}
// tx with almost empty scripts.
tx := &wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{
{
PreviousOutPoint: wire.OutPoint{
Hash: wire.ShaHash([32]byte{
0xc9, 0x97, 0xa5, 0xe5,
0x6e, 0x10, 0x41, 0x02,
0xfa, 0x20, 0x9c, 0x6a,
0x85, 0x2d, 0xd9, 0x06,
0x60, 0xa2, 0x0b, 0x2d,
0x9c, 0x35, 0x24, 0x23,
0xed, 0xce, 0x25, 0x85,
0x7f, 0xcd, 0x37, 0x04,
}),
Index: 0,
},
SignatureScript: []uint8{txscript.OP_NOP},
Sequence: 4294967295,
},
},
TxOut: []*wire.TxOut{
{
Value: 1000000000,
PkScript: []byte{},
},
},
LockTime: 0,
}
pkScript := []byte{txscript.OP_NOP}
for _, test := range pcTests {
engine, err := txscript.NewScript(pkScript, tx, 0, 0)
if err != nil {
t.Errorf("Failed to create script: %v", err)
}
// set to after all scripts
engine.TstSetPC(test.script, test.off)
_, err = engine.Step()
if err == nil {
t.Errorf("Step with invalid pc (%v) succeeds!", test)
continue
}
_, err = engine.DisasmPC()
if err == nil {
t.Errorf("DisasmPC with invalid pc (%v) succeeds!",
test)
}
}
}
// Most codepaths in CheckErrorCondition() are testd elsewhere, this tests
// the execute early test.
func TestCheckErrorCondition(t *testing.T) {
t.Parallel()
// tx with almost empty scripts.
tx := &wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{
{
PreviousOutPoint: wire.OutPoint{
Hash: wire.ShaHash([32]byte{
0xc9, 0x97, 0xa5, 0xe5,
0x6e, 0x10, 0x41, 0x02,
0xfa, 0x20, 0x9c, 0x6a,
0x85, 0x2d, 0xd9, 0x06,
0x60, 0xa2, 0x0b, 0x2d,
0x9c, 0x35, 0x24, 0x23,
0xed, 0xce, 0x25, 0x85,
0x7f, 0xcd, 0x37, 0x04,
}),
Index: 0,
},
SignatureScript: []uint8{},
Sequence: 4294967295,
},
},
TxOut: []*wire.TxOut{
{
Value: 1000000000,
PkScript: []byte{},
},
},
LockTime: 0,
}
pkScript := []byte{
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_NOP,
txscript.OP_TRUE,
}
engine, err := txscript.NewScript(pkScript, tx, 0, 0)
if err != nil {
t.Errorf("failed to create script: %v", err)
}
for i := 0; i < len(pkScript)-1; i++ {
done, err := engine.Step()
if err != nil {
t.Errorf("failed to step %dth time: %v", i, err)
return
}
if done {
t.Errorf("finshed early on %dth time", i)
return
}
err = engine.CheckErrorCondition(false)
if err != txscript.ErrStackScriptUnfinished {
t.Errorf("got unexepected error %v on %dth iteration",
err, i)
return
}
}
done, err := engine.Step()
if err != nil {
t.Errorf("final step failed %v", err)
return
}
if !done {
t.Errorf("final step isn't done!")
return
}
err = engine.CheckErrorCondition(false)
if err != nil {
t.Errorf("unexpected error %v on final check", err)
}
}
type TstSigScript struct {
name string
inputs []TstInput
@ -2890,14 +2729,14 @@ nexttest:
// Validate tx input scripts
scriptFlags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures
for j := range tx.TxIn {
engine, err := txscript.NewScript(SigScriptTests[i].
vm, err := txscript.NewEngine(SigScriptTests[i].
inputs[j].txout.PkScript, tx, j, scriptFlags)
if err != nil {
t.Errorf("cannot create script vm for test %v: %v",
SigScriptTests[i].name, err)
continue nexttest
}
err = engine.Execute()
err = vm.Execute()
if (err == nil) != SigScriptTests[i].inputs[j].inputValidates {
if err == nil {
t.Errorf("passed test '%v' validation incorrectly: %v",
@ -3314,14 +3153,14 @@ func signAndCheck(msg string, tx *wire.MsgTx, idx int, pkScript []byte,
func checkScripts(msg string, tx *wire.MsgTx, idx int, sigScript, pkScript []byte) error {
tx.TxIn[idx].SignatureScript = sigScript
engine, err := txscript.NewScript(pkScript, tx, idx,
vm, err := txscript.NewEngine(pkScript, tx, idx,
txscript.ScriptBip16|txscript.ScriptVerifyDERSignatures)
if err != nil {
return fmt.Errorf("failed to make script engine for %s: %v",
msg, err)
}
err = engine.Execute()
err = vm.Execute()
if err != nil {
return fmt.Errorf("invalid script signature for %s: %v", msg,
err)
@ -4851,7 +4690,7 @@ func TestInvalidFlagCombinations(t *testing.T) {
pkScript := []byte{txscript.OP_NOP}
for i, test := range tests {
_, err := txscript.NewScript(pkScript, tx, 0, test)
_, err := txscript.NewEngine(pkScript, tx, 0, test)
if err != txscript.ErrInvalidFlags {
t.Fatalf("TestInvalidFlagCombinations #%d unexpected "+
"error: %v", i, err)