Merge btcec repo into btcec directory.

This commit is contained in:
Dave Collins 2015-02-06 10:25:25 -06:00
commit c360543fa9
19 changed files with 5794 additions and 0 deletions

74
btcec/README.md Normal file
View file

@ -0,0 +1,74 @@
btcec
=====
[![Build Status](https://travis-ci.org/btcsuite/btcd.png?branch=master)]
(https://travis-ci.org/btcsuite/btcec)
Package btcec implements elliptic curve cryptography needed for working with
Bitcoin (secp256k1 only for now). It is designed so that it may be used with the
standard crypto/ecdsa packages provided with go. A comprehensive suite of test
is provided to ensure proper functionality. Package btcec was originally based
on work from ThePiachu which is licensed under the same terms as Go, but it has
signficantly diverged since then. The Conformal original is licensed under the
liberal ISC license.
Although this package was primarily written for btcd, it has intentionally been
designed so it can be used as a standalone package for any projects needing to
use secp256k1 elliptic curve cryptography.
## Documentation
[![GoDoc](https://godoc.org/github.com/btcsuite/btcd/btcec?status.png)]
(http://godoc.org/github.com/btcsuite/btcd/btcec)
Full `go doc` style documentation for the project can be viewed online without
installing this package by using the GoDoc site
[here](http://godoc.org/github.com/btcsuite/btcd/btcec).
You can also view the documentation locally once the package is installed with
the `godoc` tool by running `godoc -http=":6060"` and pointing your browser to
http://localhost:6060/pkg/github.com/btcsuite/btcd/btcec
## Installation
```bash
$ go get github.com/btcsuite/btcec
```
## Examples
* [Sign Message]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--SignMessage)
Demonstrates signing a message with a secp256k1 private key that is first
parsed form raw bytes and serializing the generated signature.
* [Verify Signature]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--VerifySignature)
Demonstrates verifying a secp256k1 signature against a public key that is
first parsed from raw bytes. The signature is also parsed from raw bytes.
## GPG Verification Key
All official release tags are signed by Conformal so users can ensure the code
has not been tampered with and is coming from Conformal. To verify the
signature perform the following:
- Download the public key from the Conformal website at
https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt
- Import the public key into your GPG keyring:
```bash
gpg --import GIT-GPG-KEY-conformal.txt
```
- Verify the release tag with the following command where `TAG_NAME` is a
placeholder for the specific tag:
```bash
git tag -v TAG_NAME
```
## License
Package btcec is licensed under the [copyfree](http://copyfree.org) ISC License
except for btcec.go and btcec_test.go which is under the same license as Go.

117
btcec/bench_test.go Normal file
View file

@ -0,0 +1,117 @@
// Copyright 2013-2014 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec_test
import (
"testing"
"github.com/btcsuite/btcd/btcec"
)
// BenchmarkAddJacobian benchmarks the secp256k1 curve addJacobian function with
// Z values of 1 so that the associated optimizations are used.
func BenchmarkAddJacobian(b *testing.B) {
b.StopTimer()
x1 := btcec.NewFieldVal().SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y1 := btcec.NewFieldVal().SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
z1 := btcec.NewFieldVal().SetHex("1")
x2 := btcec.NewFieldVal().SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y2 := btcec.NewFieldVal().SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
z2 := btcec.NewFieldVal().SetHex("1")
x3, y3, z3 := btcec.NewFieldVal(), btcec.NewFieldVal(), btcec.NewFieldVal()
curve := btcec.S256()
b.StartTimer()
for i := 0; i < b.N; i++ {
curve.TstAddJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
}
// BenchmarkAddJacobianNotZOne benchmarks the secp256k1 curve addJacobian
// function with Z values other than one so the optimizations associated with
// Z=1 aren't used.
func BenchmarkAddJacobianNotZOne(b *testing.B) {
b.StopTimer()
x1 := btcec.NewFieldVal().SetHex("d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718")
y1 := btcec.NewFieldVal().SetHex("5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190")
z1 := btcec.NewFieldVal().SetHex("2")
x2 := btcec.NewFieldVal().SetHex("91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4")
y2 := btcec.NewFieldVal().SetHex("03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1")
z2 := btcec.NewFieldVal().SetHex("3")
x3, y3, z3 := btcec.NewFieldVal(), btcec.NewFieldVal(), btcec.NewFieldVal()
curve := btcec.S256()
b.StartTimer()
for i := 0; i < b.N; i++ {
curve.TstAddJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
}
// BenchmarkScalarBaseMult benchmarks the secp256k1 curve ScalarBaseMult
// function.
func BenchmarkScalarBaseMult(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
curve := btcec.S256()
for i := 0; i < b.N; i++ {
curve.ScalarBaseMult(k.Bytes())
}
}
// BenchmarkScalarBaseMultLarge benchmarks the secp256k1 curve ScalarBaseMult
// function with abnormally large k values.
func BenchmarkScalarBaseMultLarge(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c005751111111011111110")
curve := btcec.S256()
for i := 0; i < b.N; i++ {
curve.ScalarBaseMult(k.Bytes())
}
}
// BenchmarkScalarMult benchmarks the secp256k1 curve ScalarMult function.
func BenchmarkScalarMult(b *testing.B) {
x := fromHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y := fromHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
curve := btcec.S256()
for i := 0; i < b.N; i++ {
curve.ScalarMult(x, y, k.Bytes())
}
}
// BenchmarkNAF benchmarks the NAF function.
func BenchmarkNAF(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
for i := 0; i < b.N; i++ {
btcec.NAF(k.Bytes())
}
}
// BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to
// verify signatures.
func BenchmarkSigVerify(b *testing.B) {
b.StopTimer()
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
pubKey := btcec.PublicKey{
Curve: btcec.S256(),
X: fromHex("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
Y: fromHex("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
}
// Double sha256 of []byte{0x01, 0x02, 0x03, 0x04}
msgHash := fromHex("8de472e2399610baaa7f84840547cd409434e31f5d3bd71e4d947f283874f9c0")
sig := btcec.Signature{
R: fromHex("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
S: fromHex("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
}
if !sig.Verify(msgHash.Bytes(), &pubKey) {
b.Errorf("Signature failed to verify")
return
}
b.StartTimer()
for i := 0; i < b.N; i++ {
sig.Verify(msgHash.Bytes(), &pubKey)
}
}

924
btcec/btcec.go Normal file
View file

@ -0,0 +1,924 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013-2014 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec
// References:
// [SECG]: Recommended Elliptic Curve Domain Parameters
// http://www.secg.org/sec2-v2.pdf
// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.
import (
"crypto/elliptic"
"math/big"
"sync"
)
//TODO: examine if we need to care about EC optimization as descibed here
// https://bitcointalk.org/index.php?topic=155054.0;all
var (
// fieldOne is simply the integer 1 in field representation. It is
// used to avoid needing to create it multiple times during the internal
// arithmetic.
fieldOne = new(fieldVal).SetInt(1)
)
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
// interface from crypto/elliptic.
type KoblitzCurve struct {
*elliptic.CurveParams
q *big.Int
H int // cofactor of the curve.
// The next 6 values are used specifically for endomorphism optimizations
// in ScalarMult.
// lambda should fulfill lambda^3 = 1 mod N where N is the order of G
lambda *big.Int
// beta should fulfill beta^3 = 1 mod P where P is the prime field of the curve
beta *fieldVal
// a1, b1, a2 and b2 are explained in detail in Guide To Elliptical Curve
// Cryptography (Hankerson, Menezes, Vanstone) in Algorithm 3.74
a1 *big.Int
b1 *big.Int
a2 *big.Int
b2 *big.Int
byteSize int
bytePoints *[32][256][3]fieldVal
}
// Params returns the parameters for the curve.
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
return curve.CurveParams
}
// bigAffineToField takes an affine point (x, y) as big integers and converts
// it to an affine point as field values.
func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
x3, y3 := new(fieldVal), new(fieldVal)
x3.SetByteSlice(x.Bytes())
y3.SetByteSlice(y.Bytes())
return x3, y3
}
// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
// converts it to an affine point as big integers.
func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
// Inversions are expensive and both point addition and point doubling
// are faster when working with points that have a z value of one. So,
// if the point needs to be converted to affine, go ahead and normalize
// the point itself at the same time as the calculation is the same.
var zInv, tempZ fieldVal
zInv.Set(z).Inverse() // zInv = Z^-1
tempZ.SquareVal(&zInv) // tempZ = Z^-2
x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
z.SetInt(1) // Z = 1 (mag: 1)
// Normalize the x and y values.
x.Normalize()
y.Normalize()
// Convert the field values for the now affine point to big.Ints.
x3, y3 := new(big.Int), new(big.Int)
x3.SetBytes(x.Bytes()[:])
y3.SetBytes(y.Bytes()[:])
return x3, y3
}
// IsOnCurve returns boolean if the point (x,y) is on the curve.
// Part of the elliptic.Curve interface. This function differs from the
// crypto/elliptic algorithm since a = 0 not -3.
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
// Convert big ints to field values for faster arithmetic.
fx, fy := curve.bigAffineToField(x, y)
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
y2 := new(fieldVal).SquareVal(fy).Normalize()
result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
return y2.Equals(result)
}
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
// z values of 1 and stores the result in (x3, y3, z3). That is to say
// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
// the generic add routine since less arithmetic is needed due to the ability to
// avoid the z value multiplications.
func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
// To compute the point addition efficiently, this implementation splits
// the equation into intermediate elements which are used to minimize
// the number of field multiplications using the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
//
// In particular it performs the calculations using the following:
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
//
// This results in a cost of 4 field multiplications, 2 field squarings,
// 6 field additions, and 5 integer multiplications.
// When the x coordinates are the same for two points on the curve, the
// y coordinates either must be the same, in which case it is point
// doubling, or they are opposite and the result is the point at
// infinity per the group law for elliptic curve cryptography.
x1.Normalize()
y1.Normalize()
x2.Normalize()
y2.Normalize()
if x1.Equals(x2) {
if y1.Equals(y2) {
// Since x1 == x2 and y1 == y2, point doubling must be
// done, otherwise the addition would end up dividing
// by zero.
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
return
}
// Since x1 == x2 and y1 == -y2, the sum is the point at
// infinity per the group law.
x3.SetInt(0)
y3.SetInt(0)
z3.SetInt(0)
return
}
// Calculate X3, Y3, and Z3 according to the intermediate elements
// breakdown above.
var h, i, j, r, v fieldVal
var negJ, neg2V, negX3 fieldVal
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
j.Mul2(&h, &i) // J = H*I (mag: 1)
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
v.Mul2(x1, &i) // V = X1*I (mag: 1)
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
// Normalize the resulting field values to a magnitude of 1 as needed.
x3.Normalize()
y3.Normalize()
z3.Normalize()
}
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
// same z value and stores the result in (x3, y3, z3). That is to say
// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
// the generic add routine since less arithmetic is needed due to the known
// equivalence.
func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
// To compute the point addition efficiently, this implementation splits
// the equation into intermediate elements which are used to minimize
// the number of field multiplications using a slightly modified version
// of the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
//
// In particular it performs the calculations using the following:
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
//
// This results in a cost of 5 field multiplications, 2 field squarings,
// 9 field additions, and 0 integer multiplications.
// When the x coordinates are the same for two points on the curve, the
// y coordinates either must be the same, in which case it is point
// doubling, or they are opposite and the result is the point at
// infinity per the group law for elliptic curve cryptography.
x1.Normalize()
y1.Normalize()
x2.Normalize()
y2.Normalize()
if x1.Equals(x2) {
if y1.Equals(y2) {
// Since x1 == x2 and y1 == y2, point doubling must be
// done, otherwise the addition would end up dividing
// by zero.
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
return
}
// Since x1 == x2 and y1 == -y2, the sum is the point at
// infinity per the group law.
x3.SetInt(0)
y3.SetInt(0)
z3.SetInt(0)
return
}
// Calculate X3, Y3, and Z3 according to the intermediate elements
// breakdown above.
var a, b, c, d, e, f fieldVal
var negX1, negY1, negE, negX3 fieldVal
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
b.SquareVal(&a) // B = A^2 (mag: 1)
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
d.SquareVal(&c) // D = C^2 (mag: 1)
e.Mul2(x1, &b) // E = X1*B (mag: 1)
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
f.Mul2(x2, &b) // F = X2*B (mag: 1)
x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
// Normalize the resulting field values to a magnitude of 1 as needed.
x3.Normalize()
y3.Normalize()
}
// addZ2EqualsOne adds two Jacobian points when the second point is already
// known to have a z value of 1 (and the z value for the first point is not 1)
// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
// add routine since less arithmetic is needed due to the ability to avoid
// multiplications by the second point's z value.
func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
// To compute the point addition efficiently, this implementation splits
// the equation into intermediate elements which are used to minimize
// the number of field multiplications using the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
//
// In particular it performs the calculations using the following:
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
//
// This results in a cost of 7 field multiplications, 4 field squarings,
// 9 field additions, and 4 integer multiplications.
// When the x coordinates are the same for two points on the curve, the
// y coordinates either must be the same, in which case it is point
// doubling, or they are opposite and the result is the point at
// infinity per the group law for elliptic curve cryptography. Since
// any number of Jacobian coordinates can represent the same affine
// point, the x and y values need to be converted to like terms. Due to
// the assumption made for this function that the second point has a z
// value of 1 (z2=1), the first point is already "converted".
var z1z1, u2, s2 fieldVal
x1.Normalize()
y1.Normalize()
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
if x1.Equals(&u2) {
if y1.Equals(&s2) {
// Since x1 == x2 and y1 == y2, point doubling must be
// done, otherwise the addition would end up dividing
// by zero.
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
return
}
// Since x1 == x2 and y1 == -y2, the sum is the point at
// infinity per the group law.
x3.SetInt(0)
y3.SetInt(0)
z3.SetInt(0)
return
}
// Calculate X3, Y3, and Z3 according to the intermediate elements
// breakdown above.
var h, hh, i, j, r, rr, v fieldVal
var negX1, negY1, negX3 fieldVal
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
hh.SquareVal(&h) // HH = H^2 (mag: 1)
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
j.Mul2(&h, &i) // J = H*I (mag: 1)
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
rr.SquareVal(&r) // rr = r^2 (mag: 1)
v.Mul2(x1, &i) // V = X1*I (mag: 1)
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
// Normalize the resulting field values to a magnitude of 1 as needed.
x3.Normalize()
y3.Normalize()
z3.Normalize()
}
// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
// assumptions about the z values of the two points and stores the result in
// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
// is the slowest of the add routines due to requiring the most arithmetic.
func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
// To compute the point addition efficiently, this implementation splits
// the equation into intermediate elements which are used to minimize
// the number of field multiplications using the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// In particular it performs the calculations using the following:
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
// V = U1*I
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
//
// This results in a cost of 11 field multiplications, 5 field squarings,
// 9 field additions, and 4 integer multiplications.
// When the x coordinates are the same for two points on the curve, the
// y coordinates either must be the same, in which case it is point
// doubling, or they are opposite and the result is the point at
// infinity. Since any number of Jacobian coordinates can represent the
// same affine point, the x and y values need to be converted to like
// terms.
var z1z1, z2z2, u1, u2, s1, s2 fieldVal
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
if u1.Equals(&u2) {
if s1.Equals(&s2) {
// Since x1 == x2 and y1 == y2, point doubling must be
// done, otherwise the addition would end up dividing
// by zero.
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
return
}
// Since x1 == x2 and y1 == -y2, the sum is the point at
// infinity per the group law.
x3.SetInt(0)
y3.SetInt(0)
z3.SetInt(0)
return
}
// Calculate X3, Y3, and Z3 according to the intermediate elements
// breakdown above.
var h, i, j, r, rr, v fieldVal
var negU1, negS1, negX3 fieldVal
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
j.Mul2(&h, &i) // J = H*I (mag: 1)
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
rr.SquareVal(&r) // rr = r^2 (mag: 1)
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
// Normalize the resulting field values to a magnitude of 1 as needed.
x3.Normalize()
y3.Normalize()
}
// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
// together and stores the result in (x3, y3, z3).
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
// A point at infinity is the identity according to the group law for
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
x3.Set(x2)
y3.Set(y2)
z3.Set(z2)
return
}
if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
x3.Set(x1)
y3.Set(y1)
z3.Set(z1)
return
}
// Faster point addition can be achieved when certain assumptions are
// met. For example, when both points have the same z value, arithmetic
// on the z values can be avoided. This section thus checks for these
// conditions and calls an appropriate add function which is accelerated
// by using those assumptions.
z1.Normalize()
z2.Normalize()
isZ1One := z1.Equals(fieldOne)
isZ2One := z2.Equals(fieldOne)
switch {
case isZ1One && isZ2One:
curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
return
case z1.Equals(z2):
curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
return
case isZ2One:
curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
return
}
// None of the above assumptions are true, so fall back to generic
// point addition.
curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
// interface.
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// A point at infinity is the identity according to the group law for
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
if x1.Sign() == 0 && y1.Sign() == 0 {
return x2, y2
}
if x2.Sign() == 0 && y2.Sign() == 0 {
return x1, y1
}
// Convert the affine coordinates from big integers to field values
// and do the point addition in Jacobian projective space.
fx1, fy1 := curve.bigAffineToField(x1, y1)
fx2, fy2 := curve.bigAffineToField(x2, y2)
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
fOne := new(fieldVal).SetInt(1)
curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
// Convert the Jacobian coordinate field values back to affine big
// integers.
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
}
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
// when the point is already known to have a z value of 1 and stores
// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
// performs faster point doubling than the generic routine since less arithmetic
// is needed due to the ability to avoid multiplication by the z value.
func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
// This function uses the assumptions that z1 is 1, thus the point
// doubling formulas reduce to:
//
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
// Z3 = 2*Y1
//
// To compute the above efficiently, this implementation splits the
// equation into intermediate elements which are used to minimize the
// number of field multiplications in favor of field squarings which
// are roughly 35% faster than field multiplications with the current
// implementation at the time this was written.
//
// This uses a slightly modified version of the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
//
// In particular it performs the calculations using the following:
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
// Z3 = 2*Y1
//
// This results in a cost of 1 field multiplication, 5 field squarings,
// 6 field additions, and 5 integer multiplications.
var a, b, c, d, e, f fieldVal
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
a.SquareVal(x1) // A = X1^2 (mag: 1)
b.SquareVal(y1) // B = Y1^2 (mag: 1)
c.SquareVal(&b) // C = B^2 (mag: 1)
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
f.SquareVal(&e) // F = E^2 (mag: 1)
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
x3.Add(&f) // X3 = F+X3 (mag: 18)
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
// Normalize the field values back to a magnitude of 1.
x3.Normalize()
y3.Normalize()
z3.Normalize()
}
// doubleGeneric performs point doubling on the passed Jacobian point without
// any assumptions about the z value and stores the result in (x3, y3, z3).
// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
// doubling routines due to requiring the most arithmetic.
func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
// Point doubling formula for Jacobian coordinates for the secp256k1
// curve:
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
// Z3 = 2*Y1*Z1
//
// To compute the above efficiently, this implementation splits the
// equation into intermediate elements which are used to minimize the
// number of field multiplications in favor of field squarings which
// are roughly 35% faster than field multiplications with the current
// implementation at the time this was written.
//
// This uses a slightly modified version of the method shown at:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
//
// In particular it performs the calculations using the following:
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
// Z3 = 2*Y1*Z1
//
// This results in a cost of 1 field multiplication, 5 field squarings,
// 6 field additions, and 5 integer multiplications.
var a, b, c, d, e, f fieldVal
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
a.SquareVal(x1) // A = X1^2 (mag: 1)
b.SquareVal(y1) // B = Y1^2 (mag: 1)
c.SquareVal(&b) // C = B^2 (mag: 1)
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
f.SquareVal(&e) // F = E^2 (mag: 1)
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
x3.Add(&f) // X3 = F+X3 (mag: 18)
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
// Normalize the field values back to a magnitude of 1.
x3.Normalize()
y3.Normalize()
z3.Normalize()
}
// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
// result in (x3, y3, z3).
func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
// Doubling a point at infinity is still infinity.
if y1.IsZero() || z1.IsZero() {
x3.SetInt(0)
y3.SetInt(0)
z3.SetInt(0)
return
}
// Slightly faster point doubling can be achieved when the z value is 1
// by avoiding the multiplication on the z value. This section calls
// a point doubling function which is accelerated by using that
// assumption when possible.
if z1.Normalize().Equals(fieldOne) {
curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
return
}
// Fall back to generic point doubling which works with arbitrary z
// values.
curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
}
// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
if y1.Sign() == 0 {
return new(big.Int), new(big.Int)
}
// Convert the affine coordinates from big integers to field values
// and do the point doubling in Jacobian projective space.
fx1, fy1 := curve.bigAffineToField(x1, y1)
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
fOne := new(fieldVal).SetInt(1)
curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
// Convert the Jacobian coordinate field values back to affine big
// integers.
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
}
// splitK returns a balanced length-two representation of k and their
// signs.
// This is algorithm 3.74 from Guide to Elliptical Curve Cryptography (ref above)
// One thing of note about this algorithm is that no matter what c1 and c2 are,
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is provable
// mathematically due to how a1/b1/a2/b2 are computed.
// c1 and c2 are chosen to minimize the max(k1,k2).
func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
// All math here is done with big.Int, which is slow.
// At some point, it might be useful to write something similar to fieldVal
// but for N instead of P as the prime field if this ends up being a
// bottleneck.
bigIntK, c1, c2, tmp1, tmp2, k1, k2 := new(big.Int), new(big.Int), new(big.Int), new(big.Int), new(big.Int), new(big.Int), new(big.Int)
bigIntK.SetBytes(k)
// c1 = round(b2 * k / n) from step 4.
// Rounding isn't really necessary and costs too much, hence skipped
c1.Mul(curve.b2, bigIntK)
c1.Div(c1, curve.N)
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
// Rounding isn't really necessary and costs too much, hence skipped
c2.Mul(curve.b1, bigIntK)
c2.Div(c2, curve.N)
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
tmp1.Mul(c1, curve.a1)
tmp2.Mul(c2, curve.a2)
k1.Sub(bigIntK, tmp1)
k1.Add(k1, tmp2)
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
tmp1.Mul(c1, curve.b1)
tmp2.Mul(c2, curve.b2)
k2.Sub(tmp2, tmp1)
// Note Bytes() throws out the sign of k1 and k2. This matters
// since k1 and/or k2 can be negative. Hence, we pass that
// back separately.
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
}
// moduloReduce reduces k from more than 32 bytes to 32 bytes and under.
// This is done by doing a simple modulo curve.N. We can do this since
// G^N = 1 and thus any other valid point on the elliptical curve has the
// same order.
func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
// Since the order of G is curve.N, we can use a much smaller number
// by doing modulo curve.N
if len(k) > curve.byteSize {
// reduce k by performing modulo curve.N
tmpK := new(big.Int).SetBytes(k)
tmpK.Mod(tmpK, curve.N)
return tmpK.Bytes()
}
return k
}
// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF)
// as two byte slices. The first is where 1's should be. The second is where
// -1's should be.
// NAF is also convenient in that on average, only 1/3rd of its values are
// non-zero.
// The algorithm here is from Guide to Elliptical Cryptography 3.30 (ref above)
// Essentially, this makes it possible to minimize the number of operations
// since the resulting ints returned will be at least 50% 0's.
func NAF(k []byte) ([]byte, []byte) {
// The essence of this algorithm is that whenever we have consecutive 1s
// in the binary, we want to put a -1 in the lowest bit and get a bunch of
// 0s up to the highest bit of consecutive 1s. This is due to this identity:
// 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
// The algorithm thus may need to go 1 more bit than the length of the bits
// we actually have, hence bits being 1 bit longer than was necessary.
// Since we need to know whether adding will cause a carry, we go from
// right-to-left in this addition.
var carry, curIsOne, nextIsOne bool
// these default to zero
retPos := make([]byte, len(k)+1)
retNeg := make([]byte, len(k)+1)
for i := len(k) - 1; i >= 0; i-- {
curByte := k[i]
for j := uint(0); j < 8; j++ {
curIsOne = curByte&1 == 1
if j == 7 {
if i == 0 {
nextIsOne = false
} else {
nextIsOne = k[i-1]&1 == 1
}
} else {
nextIsOne = curByte&2 == 2
}
if carry {
if curIsOne {
// This bit is 1, so we continue to carry and
// don't need to do anything
} else {
// We've hit a 0 after some number of 1s.
if nextIsOne {
// We start carrying again since we're starting
// a new sequence of 1s.
retNeg[i+1] += 1 << j
} else {
// We stop carrying since 1s have stopped.
carry = false
retPos[i+1] += 1 << j
}
}
} else if curIsOne {
if nextIsOne {
// if this is the start of at least 2 consecutive 1's
// we want to set the current one to -1 and start carrying
retNeg[i+1] += 1 << j
carry = true
} else {
// this is a singleton, not consecutive 1's.
retPos[i+1] += 1 << j
}
}
curByte >>= 1
}
}
if carry {
retPos[0] = 1
}
return retPos, retNeg
}
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
// Part of the elliptic.Curve interface.
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
// Point Q = ∞ (point at infinity).
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
// decompose K into k1 and k2 in order to halve the number of EC ops
// see Algorithm 3.74 in Guide to Elliptical Curve Cryptography by
// Hankerson, et al.
k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
// The main equation here to remember is
// k * P = k1 * P + k2 * ϕ(P)
// P1 below is P in the equation, P2 below is ϕ(P) in the equation
p1x, p1y := curve.bigAffineToField(Bx, By)
// For NAF, we need the negative point
p1yNeg := new(fieldVal).NegateVal(p1y, 1)
p1z := new(fieldVal).SetInt(1)
// Note ϕ(x,y) = (βx,y), the Jacobian z coordinate is 1, so this math
// goes through.
p2x := new(fieldVal).Mul2(p1x, curve.beta)
p2y := new(fieldVal).Set(p1y)
// For NAF, we need the negative point
p2yNeg := new(fieldVal).NegateVal(p2y, 1)
p2z := new(fieldVal).SetInt(1)
// If k1 or k2 are negative, we flip the positive/negative values
if signK1 == -1 {
p1y, p1yNeg = p1yNeg, p1y
}
if signK2 == -1 {
p2y, p2yNeg = p2yNeg, p2y
}
// NAF versions of k1 and k2 should have a lot more zeros
// the Pos version of the bytes contain the +1's and the Neg versions
// contain the -1's
k1PosNAF, k1NegNAF := NAF(k1)
k2PosNAF, k2NegNAF := NAF(k2)
k1Len := len(k1PosNAF)
k2Len := len(k2PosNAF)
m := k1Len
if m < k2Len {
m = k2Len
}
// We add left-to-right using the NAF optimization. This is using
// algorithm 3.77 from Guide to Elliptical Curve Cryptography.
// This should be faster overall since there will be a lot more instances
// of 0, hence reducing the number of Jacobian additions at the cost
// of 1 possible extra doubling.
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
for i := 0; i < m; i++ {
// Since we're going left-to-right, we need to pad the front with 0's
if i < m-k1Len {
k1BytePos = 0
k1ByteNeg = 0
} else {
k1BytePos = k1PosNAF[i-(m-k1Len)]
k1ByteNeg = k1NegNAF[i-(m-k1Len)]
}
if i < m-k2Len {
k2BytePos = 0
k2ByteNeg = 0
} else {
k2BytePos = k2PosNAF[i-(m-k2Len)]
k2ByteNeg = k2NegNAF[i-(m-k2Len)]
}
for j := 7; j >= 0; j-- {
// Q = 2 * Q
curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
if k1BytePos&0x80 == 0x80 {
curve.addJacobian(qx, qy, qz, p1x, p1y, p1z, qx, qy, qz)
} else if k1ByteNeg&0x80 == 0x80 {
curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z, qx, qy, qz)
}
if k2BytePos&0x80 == 0x80 {
curve.addJacobian(qx, qy, qz, p2x, p2y, p2z, qx, qy, qz)
} else if k2ByteNeg&0x80 == 0x80 {
curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z, qx, qy, qz)
}
k1BytePos <<= 1
k1ByteNeg <<= 1
k2BytePos <<= 1
k2ByteNeg <<= 1
}
}
// Convert the Jacobian coordinate field values back to affine big.Ints.
return curve.fieldJacobianToBigAffine(qx, qy, qz)
}
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
// big endian integer.
// Part of the elliptic.Curve interface.
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
newK := curve.moduloReduce(k)
diff := len(curve.bytePoints) - len(newK)
// Point Q = ∞ (point at infinity).
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
// curve.bytePoints has all 256 byte points for each 8-bit window. The
// strategy is to add up the byte points. This is best understood by
// expressing k in base-256 which it already sort of is.
// Each "digit" in the 8-bit window can be looked up using bytePoints
// and added together.
for i, byteVal := range newK {
point := curve.bytePoints[diff+i][byteVal]
curve.addJacobian(qx, qy, qz, &point[0], &point[1], &point[2], qx, qy, qz)
}
return curve.fieldJacobianToBigAffine(qx, qy, qz)
}
// QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
// square roots via exponention.
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
return curve.q
}
var initonce sync.Once
var secp256k1 KoblitzCurve
func initAll() {
initS256()
}
func initS256() {
// Curve parameters taken from [SECG] section 2.4.1.
secp256k1.CurveParams = new(elliptic.CurveParams)
secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
secp256k1.BitSize = 256
secp256k1.H = 1
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
big.NewInt(1)), big.NewInt(4))
// Deserialize and set the pre-computed table used to accelerate scalar
// base multiplication. This is hard-coded data, so any errors are
// panics because it means something is wrong in the source code.
if err := loadS256BytePoints(); err != nil {
panic(err)
}
// Next 6 constants are from Hal Finney's bitcointalk.org post:
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
// May he rest in peace.
// These have been independently verified by Dave Collins using
// an ecc math script.
secp256k1.lambda, _ = new(big.Int).SetString("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72", 16)
secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
secp256k1.a1, _ = new(big.Int).SetString("3086D221A7D46BCDE86C90E49284EB15", 16)
secp256k1.b1, _ = new(big.Int).SetString("-E4437ED6010E88286F547FA90ABFE4C3", 16)
secp256k1.a2, _ = new(big.Int).SetString("114CA50F7A8E2F3F657C1108D9D44CFD8", 16)
secp256k1.b2, _ = new(big.Int).SetString("3086D221A7D46BCDE86C90E49284EB15", 16)
// for convenience this gets computed repeatedly
secp256k1.byteSize = secp256k1.BitSize / 8
// Alternatively, we can use the parameters below, however, they seem
// to be about 8% slower.
// λ = AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE
// β = 851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40
// secp256k1.lambda, _ = new(big.Int).SetString("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE", 16)
// secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
// secp256k1.a1, _ = new(big.Int).SetString("E4437ED6010E88286F547FA90ABFE4C3", 16)
// secp256k1.b1, _ = new(big.Int).SetString("-3086D221A7D46BCDE86C90E49284EB15", 16)
// secp256k1.a2, _ = new(big.Int).SetString("3086D221A7D46BCDE86C90E49284EB15", 16)
// secp256k1.b2, _ = new(big.Int).SetString("114CA50F7A8E2F3F657C1108D9D44CFD8", 16)
}
// S256 returns a Curve which implements secp256k1.
func S256() *KoblitzCurve {
initonce.Do(initAll)
return &secp256k1
}

861
btcec/btcec_test.go Normal file
View file

@ -0,0 +1,861 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013-2014 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec_test
import (
"crypto/rand"
"crypto/sha1"
"encoding/hex"
"fmt"
"math/big"
"testing"
"github.com/btcsuite/btcd/btcec"
)
// TestAddJacobian tests addition of points projected in Jacobian coordinates.
func TestAddJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of first point to add
x2, y2, z2 string // Coordinates (in hex) of second point to add
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with z1=z2=1 different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6",
"e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87",
"44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f",
},
// Addition with z1=z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1=z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Addition with z1=z2 (!=1) different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147",
"98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8",
"2",
"cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60",
"817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778",
"129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d",
},
// Addition with z1=z2 (!=1) same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f",
"2",
"0",
"0",
"0",
},
// Addition with z1=z2 (!=1) same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2=1 different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3",
"0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04",
"252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a",
},
// Addition with z1!=z2 and z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2!=1 different x values.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4",
"03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1",
"3",
"3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e",
"949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031",
"eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931",
}, // Addition with z1!=z2 and z2!=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18",
"3",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2!=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17",
"3",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1 := btcec.NewFieldVal().SetHex(test.x1)
y1 := btcec.NewFieldVal().SetHex(test.y1)
z1 := btcec.NewFieldVal().SetHex(test.z1)
x2 := btcec.NewFieldVal().SetHex(test.x2)
y2 := btcec.NewFieldVal().SetHex(test.y2)
z2 := btcec.NewFieldVal().SetHex(test.z2)
x3 := btcec.NewFieldVal().SetHex(test.x3)
y3 := btcec.NewFieldVal().SetHex(test.y3)
z3 := btcec.NewFieldVal().SetHex(test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !z1.IsZero() && !btcec.S256().TstIsJacobianOnCurve(x1, y1, z1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z2.IsZero() && !btcec.S256().TstIsJacobianOnCurve(x2, y2, z2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z3.IsZero() && !btcec.S256().TstIsJacobianOnCurve(x3, y3, z3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
rx, ry, rz := btcec.NewFieldVal(), btcec.NewFieldVal(), btcec.NewFieldVal()
btcec.S256().TstAddJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz)
// Ensure result matches expected.
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
continue
}
}
}
// TestAddAffine tests addition of points in affine coordinates.
func TestAddAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of first point to add
x2, y2 string // Coordinates (in hex) of second point to add
x3, y3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69",
"21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f",
},
// Addition with same x opposite y.
// P(x, y) + P(x, -y) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"0",
"0",
},
// Addition with same point.
// P(x, y) + P(x, y) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b",
"938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x2, y2 := fromHex(test.x2), fromHex(test.y2)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !btcec.S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x2.Sign() == 0 && y2.Sign() == 0) && !btcec.S256().IsOnCurve(x2, y2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !btcec.S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
rx, ry := btcec.S256().Add(x1, y1, x2, y2)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
// TestDoubleJacobian tests doubling of points projected in Jacobian
// coordinates.
func TestDoubleJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of point to double
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
{
"0",
"0",
"0",
"0",
"0",
"0",
},
// Doubling with z1=1.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Doubling with z1!=1.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1 := btcec.NewFieldVal().SetHex(test.x1)
y1 := btcec.NewFieldVal().SetHex(test.y1)
z1 := btcec.NewFieldVal().SetHex(test.z1)
x3 := btcec.NewFieldVal().SetHex(test.x3)
y3 := btcec.NewFieldVal().SetHex(test.y3)
z3 := btcec.NewFieldVal().SetHex(test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !z1.IsZero() && !btcec.S256().TstIsJacobianOnCurve(x1, y1, z1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z3.IsZero() && !btcec.S256().TstIsJacobianOnCurve(x3, y3, z3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
rx, ry, rz := btcec.NewFieldVal(), btcec.NewFieldVal(), btcec.NewFieldVal()
btcec.S256().TstDoubleJacobian(x1, y1, z1, rx, ry, rz)
// Ensure result matches expected.
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
continue
}
}
}
// TestDoubleAffine tests doubling of points in affine coordinates.
func TestDoubleAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of point to double
x3, y3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
// 2*∞ = ∞ (point at infinity)
{
"0",
"0",
"0",
"0",
},
// Random points.
{
"e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86",
"1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899",
"88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19",
"3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1",
},
{
"b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c",
"c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a",
"e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1",
"2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789",
},
{
"2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340",
"9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1",
"2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2",
"bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95",
},
{
"61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a",
"ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd",
"5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4",
"a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !btcec.S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !btcec.S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
rx, ry := btcec.S256().Double(x1, y1)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
func TestOnCurve(t *testing.T) {
s256 := btcec.S256()
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
t.Errorf("FAIL S256")
}
}
type baseMultTest struct {
k string
x, y string
}
//TODO: add more test vectors
var s256BaseMultTests = []baseMultTest{
{
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
},
{
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
},
{
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
},
{
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
},
{
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
},
}
//TODO: test different curves as well?
func TestBaseMult(t *testing.T) {
s256 := btcec.S256()
for i, e := range s256BaseMultTests {
k, ok := new(big.Int).SetString(e.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, e.k)
}
x, y := s256.ScalarBaseMult(k.Bytes())
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
}
if testing.Short() && i > 5 {
break
}
}
}
func TestBaseMultVerify(t *testing.T) {
s256 := btcec.S256()
for bytes := 1; bytes < 40; bytes++ {
for i := 0; i < 30; i++ {
data := make([]byte, bytes)
_, err := rand.Read(data)
if err != nil {
t.Errorf("failed to read random data for %s", i)
continue
}
x, y := s256.ScalarBaseMult(data)
xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data)
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
}
if testing.Short() && i > 2 {
break
}
}
}
}
func TestScalarMult(t *testing.T) {
// Strategy for this test:
// Get a random exponent from the generator point at first
// This creates a new point which is used in the next iteration
// Use another random exponent on the new point.
// We use BaseMult to verify by multiplying the previous exponent
// and the new random exponent together (mod N)
s256 := btcec.S256()
x, y := s256.Gx, s256.Gy
exponent := big.NewInt(1)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
x, y = s256.ScalarMult(x, y, data)
exponent.Mul(exponent, new(big.Int).SetBytes(data))
xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
break
}
}
}
//TODO: test more curves?
func BenchmarkBaseMult(b *testing.B) {
b.ResetTimer()
s256 := btcec.S256()
e := s256BaseMultTests[0] //TODO: check, used to be 25 instead of 0, but it's probably ok
k, _ := new(big.Int).SetString(e.k, 16)
b.StartTimer()
for i := 0; i < b.N; i++ {
s256.ScalarBaseMult(k.Bytes())
}
}
// Test this curve's usage with the ecdsa package.
func testKeyGeneration(t *testing.T, c *btcec.KoblitzCurve, tag string) {
priv, err := btcec.NewPrivateKey(c)
if err != nil {
t.Errorf("%s: error: %s", tag, err)
return
}
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
t.Errorf("%s: public key invalid: %s", tag, err)
}
}
func TestKeyGeneration(t *testing.T) {
testKeyGeneration(t, btcec.S256(), "S256")
}
func testSignAndVerify(t *testing.T, c *btcec.KoblitzCurve, tag string) {
priv, _ := btcec.NewPrivateKey(c)
pub := priv.PubKey()
hashed := []byte("testing")
sig, err := priv.Sign(hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if !sig.Verify(hashed, pub) {
t.Errorf("%s: Verify failed", tag)
}
hashed[0] ^= 0xff
if sig.Verify(hashed, pub) {
t.Errorf("%s: Verify always works!", tag)
}
}
func TestSignAndVerify(t *testing.T) {
testSignAndVerify(t, btcec.S256(), "S256")
}
func TestNAF(t *testing.T) {
negOne := big.NewInt(-1)
one := big.NewInt(1)
two := big.NewInt(2)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
nafPos, nafNeg := btcec.NAF(data)
want := new(big.Int).SetBytes(data)
got := big.NewInt(0)
// Check that the NAF representation comes up with the right number
for i := 0; i < len(nafPos); i++ {
bytePos := nafPos[i]
byteNeg := nafNeg[i]
for j := 7; j >= 0; j-- {
got.Mul(got, two)
if bytePos&0x80 == 0x80 {
got.Add(got, one)
} else if byteNeg&0x80 == 0x80 {
got.Add(got, negOne)
}
bytePos <<= 1
byteNeg <<= 1
}
}
if got.Cmp(want) != 0 {
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
}
}
}
func fromHex(s string) *big.Int {
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("bad hex")
}
return r
}
// These test vectors were taken from
// http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsatestvectors.zip
var testVectors = []struct {
msg string
Qx, Qy string
r, s string
ok bool
}{
/*
* All of these tests are disabled since they are for P224, not sec256k1.
* they are left here as an example of test vectors for when some *real*
* vectors may be found.
* - oga@conformal.com
{
"09626b45493672e48f3d1226a3aff3201960e577d33a7f72c7eb055302db8fe8ed61685dd036b554942a5737cd1512cdf811ee0c00e6dd2f08c69f08643be396e85dafda664801e772cdb7396868ac47b172245b41986aa2648cb77fbbfa562581be06651355a0c4b090f9d17d8f0ab6cced4e0c9d386cf465a516630f0231bd",
"9504b5b82d97a264d8b3735e0568decabc4b6ca275bc53cbadfc1c40",
"03426f80e477603b10dee670939623e3da91a94267fc4e51726009ed",
"81d3ac609f9575d742028dd496450a58a60eea2dcf8b9842994916e1",
"96a8c5f382c992e8f30ccce9af120b067ec1d74678fa8445232f75a5",
false,
},
{
"96b2b6536f6df29be8567a72528aceeaccbaa66c66c534f3868ca9778b02faadb182e4ed34662e73b9d52ecbe9dc8e875fc05033c493108b380689ebf47e5b062e6a0cdb3dd34ce5fe347d92768d72f7b9b377c20aea927043b509c078ed2467d7113405d2ddd458811e6faf41c403a2a239240180f1430a6f4330df5d77de37",
"851e3100368a22478a0029353045ae40d1d8202ef4d6533cfdddafd8",
"205302ac69457dd345e86465afa72ee8c74ca97e2b0b999aec1f10c2",
"4450c2d38b697e990721aa2dbb56578d32b4f5aeb3b9072baa955ee0",
"e26d4b589166f7b4ba4b1c8fce823fa47aad22f8c9c396b8c6526e12",
false,
},
{
"86778dbb4a068a01047a8d245d632f636c11d2ad350740b36fad90428b454ad0f120cb558d12ea5c8a23db595d87543d06d1ef489263d01ee529871eb68737efdb8ff85bc7787b61514bed85b7e01d6be209e0a4eb0db5c8df58a5c5bf706d76cb2bdf7800208639e05b89517155d11688236e6a47ed37d8e5a2b1e0adea338e",
"ad5bda09d319a717c1721acd6688d17020b31b47eef1edea57ceeffc",
"c8ce98e181770a7c9418c73c63d01494b8b80a41098c5ea50692c984",
"de5558c257ab4134e52c19d8db3b224a1899cbd08cc508ce8721d5e9",
"745db7af5a477e5046705c0a5eff1f52cb94a79d481f0c5a5e108ecd",
true,
},
{
"4bc6ef1958556686dab1e39c3700054a304cbd8f5928603dcd97fafd1f29e69394679b638f71c9344ce6a535d104803d22119f57b5f9477e253817a52afa9bfbc9811d6cc8c8be6b6566c6ef48b439bbb532abe30627548c598867f3861ba0b154dc1c3deca06eb28df8efd28258554b5179883a36fbb1eecf4f93ee19d41e3d",
"cc5eea2edf964018bdc0504a3793e4d2145142caa09a72ac5fb8d3e8",
"a48d78ae5d08aa725342773975a00d4219cf7a8029bb8cf3c17c374a",
"67b861344b4e416d4094472faf4272f6d54a497177fbc5f9ef292836",
"1d54f3fcdad795bf3b23408ecbac3e1321d1d66f2e4e3d05f41f7020",
false,
},
{
"bb658732acbf3147729959eb7318a2058308b2739ec58907dd5b11cfa3ecf69a1752b7b7d806fe00ec402d18f96039f0b78dbb90a59c4414fb33f1f4e02e4089de4122cd93df5263a95be4d7084e2126493892816e6a5b4ed123cb705bf930c8f67af0fb4514d5769232a9b008a803af225160ce63f675bd4872c4c97b146e5e",
"6234c936e27bf141fc7534bfc0a7eedc657f91308203f1dcbd642855",
"27983d87ca785ef4892c3591ef4a944b1deb125dd58bd351034a6f84",
"e94e05b42d01d0b965ffdd6c3a97a36a771e8ea71003de76c4ecb13f",
"1dc6464ffeefbd7872a081a5926e9fc3e66d123f1784340ba17737e9",
false,
},
{
"7c00be9123bfa2c4290be1d8bc2942c7f897d9a5b7917e3aabd97ef1aab890f148400a89abd554d19bec9d8ed911ce57b22fbcf6d30ca2115f13ce0a3f569a23bad39ee645f624c49c60dcfc11e7d2be24de9c905596d8f23624d63dc46591d1f740e46f982bfae453f107e80db23545782be23ce43708245896fc54e1ee5c43",
"9f3f037282aaf14d4772edffff331bbdda845c3f65780498cde334f1",
"8308ee5a16e3bcb721b6bc30000a0419bc1aaedd761be7f658334066",
"6381d7804a8808e3c17901e4d283b89449096a8fba993388fa11dc54",
"8e858f6b5b253686a86b757bad23658cda53115ac565abca4e3d9f57",
false,
},
{
"cffc122a44840dc705bb37130069921be313d8bde0b66201aebc48add028ca131914ef2e705d6bedd19dc6cf9459bbb0f27cdfe3c50483808ffcdaffbeaa5f062e097180f07a40ef4ab6ed03fe07ed6bcfb8afeb42c97eafa2e8a8df469de07317c5e1494c41547478eff4d8c7d9f0f484ad90fedf6e1c35ee68fa73f1691601",
"a03b88a10d930002c7b17ca6af2fd3e88fa000edf787dc594f8d4fd4",
"e0cf7acd6ddc758e64847fe4df9915ebda2f67cdd5ec979aa57421f5",
"387b84dcf37dc343c7d2c5beb82f0bf8bd894b395a7b894565d296c1",
"4adc12ce7d20a89ce3925e10491c731b15ddb3f339610857a21b53b4",
false,
},
{
"26e0e0cafd85b43d16255908ccfd1f061c680df75aba3081246b337495783052ba06c60f4a486c1591a4048bae11b4d7fec4f161d80bdc9a7b79d23e44433ed625eab280521a37f23dd3e1bdc5c6a6cfaa026f3c45cf703e76dab57add93fe844dd4cda67dc3bddd01f9152579e49df60969b10f09ce9372fdd806b0c7301866",
"9a8983c42f2b5a87c37a00458b5970320d247f0c8a88536440173f7d",
"15e489ec6355351361900299088cfe8359f04fe0cab78dde952be80c",
"929a21baa173d438ec9f28d6a585a2f9abcfc0a4300898668e476dc0",
"59a853f046da8318de77ff43f26fe95a92ee296fa3f7e56ce086c872",
true,
},
{
"1078eac124f48ae4f807e946971d0de3db3748dd349b14cca5c942560fb25401b2252744f18ad5e455d2d97ed5ae745f55ff509c6c8e64606afe17809affa855c4c4cdcaf6b69ab4846aa5624ed0687541aee6f2224d929685736c6a23906d974d3c257abce1a3fb8db5951b89ecb0cda92b5207d93f6618fd0f893c32cf6a6e",
"d6e55820bb62c2be97650302d59d667a411956138306bd566e5c3c2b",
"631ab0d64eaf28a71b9cbd27a7a88682a2167cee6251c44e3810894f",
"65af72bc7721eb71c2298a0eb4eed3cec96a737cc49125706308b129",
"bd5a987c78e2d51598dbd9c34a9035b0069c580edefdacee17ad892a",
false,
},
{
"919deb1fdd831c23481dfdb2475dcbe325b04c34f82561ced3d2df0b3d749b36e255c4928973769d46de8b95f162b53cd666cad9ae145e7fcfba97919f703d864efc11eac5f260a5d920d780c52899e5d76f8fe66936ff82130761231f536e6a3d59792f784902c469aa897aabf9a0678f93446610d56d5e0981e4c8a563556b",
"269b455b1024eb92d860a420f143ac1286b8cce43031562ae7664574",
"baeb6ca274a77c44a0247e5eb12ca72bdd9a698b3f3ae69c9f1aaa57",
"cb4ec2160f04613eb0dfe4608486091a25eb12aa4dec1afe91cfb008",
"40b01d8cd06589481574f958b98ca08ade9d2a8fe31024375c01bb40",
false,
},
{
"6e012361250dacf6166d2dd1aa7be544c3206a9d43464b3fcd90f3f8cf48d08ec099b59ba6fe7d9bdcfaf244120aed1695d8be32d1b1cd6f143982ab945d635fb48a7c76831c0460851a3d62b7209c30cd9c2abdbe3d2a5282a9fcde1a6f418dd23c409bc351896b9b34d7d3a1a63bbaf3d677e612d4a80fa14829386a64b33f",
"6d2d695efc6b43b13c14111f2109608f1020e3e03b5e21cfdbc82fcd",
"26a4859296b7e360b69cf40be7bd97ceaffa3d07743c8489fc47ca1b",
"9a8cb5f2fdc288b7183c5b32d8e546fc2ed1ca4285eeae00c8b572ad",
"8c623f357b5d0057b10cdb1a1593dab57cda7bdec9cf868157a79b97",
true,
},
{
"bf6bd7356a52b234fe24d25557200971fc803836f6fec3cade9642b13a8e7af10ab48b749de76aada9d8927f9b12f75a2c383ca7358e2566c4bb4f156fce1fd4e87ef8c8d2b6b1bdd351460feb22cdca0437ac10ca5e0abbbce9834483af20e4835386f8b1c96daaa41554ceee56730aac04f23a5c765812efa746051f396566",
"14250131b2599939cf2d6bc491be80ddfe7ad9de644387ee67de2d40",
"b5dc473b5d014cd504022043c475d3f93c319a8bdcb7262d9e741803",
"4f21642f2201278a95339a80f75cc91f8321fcb3c9462562f6cbf145",
"452a5f816ea1f75dee4fd514fa91a0d6a43622981966c59a1b371ff8",
false,
},
{
"0eb7f4032f90f0bd3cf9473d6d9525d264d14c031a10acd31a053443ed5fe919d5ac35e0be77813071b4062f0b5fdf58ad5f637b76b0b305aec18f82441b6e607b44cdf6e0e3c7c57f24e6fd565e39430af4a6b1d979821ed0175fa03e3125506847654d7e1ae904ce1190ae38dc5919e257bdac2db142a6e7cd4da6c2e83770",
"d1f342b7790a1667370a1840255ac5bbbdc66f0bc00ae977d99260ac",
"76416cabae2de9a1000b4646338b774baabfa3db4673790771220cdb",
"bc85e3fc143d19a7271b2f9e1c04b86146073f3fab4dda1c3b1f35ca",
"9a5c70ede3c48d5f43307a0c2a4871934424a3303b815df4bb0f128e",
false,
},
{
"5cc25348a05d85e56d4b03cec450128727bc537c66ec3a9fb613c151033b5e86878632249cba83adcefc6c1e35dcd31702929c3b57871cda5c18d1cf8f9650a25b917efaed56032e43b6fc398509f0d2997306d8f26675f3a8683b79ce17128e006aa0903b39eeb2f1001be65de0520115e6f919de902b32c38d691a69c58c92",
"7e49a7abf16a792e4c7bbc4d251820a2abd22d9f2fc252a7bf59c9a6",
"44236a8fb4791c228c26637c28ae59503a2f450d4cfb0dc42aa843b9",
"084461b4050285a1a85b2113be76a17878d849e6bc489f4d84f15cd8",
"079b5bddcc4d45de8dbdfd39f69817c7e5afa454a894d03ee1eaaac3",
false,
},
{
"1951533ce33afb58935e39e363d8497a8dd0442018fd96dff167b3b23d7206a3ee182a3194765df4768a3284e23b8696c199b4686e670d60c9d782f08794a4bccc05cffffbd1a12acd9eb1cfa01f7ebe124da66ecff4599ea7720c3be4bb7285daa1a86ebf53b042bd23208d468c1b3aa87381f8e1ad63e2b4c2ba5efcf05845",
"31945d12ebaf4d81f02be2b1768ed80784bf35cf5e2ff53438c11493",
"a62bebffac987e3b9d3ec451eb64c462cdf7b4aa0b1bbb131ceaa0a4",
"bc3c32b19e42b710bca5c6aaa128564da3ddb2726b25f33603d2af3c",
"ed1a719cc0c507edc5239d76fe50e2306c145ad252bd481da04180c0",
false,
},
*/
}
func TestVectors(t *testing.T) {
sha := sha1.New()
for i, test := range testVectors {
pub := btcec.PublicKey{
Curve: btcec.S256(),
X: fromHex(test.Qx),
Y: fromHex(test.Qy),
}
msg, _ := hex.DecodeString(test.msg)
sha.Reset()
sha.Write(msg)
hashed := sha.Sum(nil)
sig := btcec.Signature{R: fromHex(test.r), S: fromHex(test.s)}
if fuck := sig.Verify(hashed, &pub); fuck != test.ok {
//t.Errorf("%d: bad result %v %v", i, pub, hashed)
t.Errorf("%d: bad result %v instead of %v", i, fuck,
test.ok)
}
if testing.Short() {
break
}
}
}

21
btcec/doc.go Normal file
View file

@ -0,0 +1,21 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
/*
Package btcec implements support for the elliptic curves needed for bitcoin.
Bitcoin uses elliptic curve cryptography using koblitz curves
(specifically secp256k1) for cryptographic functions. See
http://www.secg.org/collateral/sec2_final.pdf for details on the
standard.
This package provides the data structures and functions implementing the
crypto/elliptic Curve interface in order to permit using these curves
with the standard crypto/ecdsa package provided with go. Helper
functionality is provided to parse signatures and public keys from
standard formats. It was designed for use with btcd, but should be
general enough for other uses of elliptic curve crypto. It was originally based
on some initial work by ThePiachu, but has significantly diverged since then.
*/
package btcec

89
btcec/example_test.go Normal file
View file

@ -0,0 +1,89 @@
// Copyright (c) 2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"encoding/hex"
"fmt"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/wire"
)
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
//
// NOTE: This is commented out for the example since the signature
// produced uses random numbers and therefore will always be different.
//fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Signature Verified? true
}
// This example demonstrates verifying a secp256k1 signature against a public
// key that is first parsed from raw bytes. The signature is also parsed from
// raw bytes.
func Example_verifySignature() {
// Decode hex-encoded serialized public key.
pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" +
"6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5")
if err != nil {
fmt.Println(err)
return
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Decode hex-encoded serialized signature.
sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" +
"8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" +
"1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479")
if err != nil {
fmt.Println(err)
return
}
signature, err := btcec.ParseSignature(sigBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Verify the signature for the message using the public key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
verified := signature.Verify(messageHash, pubKey)
fmt.Println("Signature Verified?", verified)
// Output:
// Signature Verified? true
}

1263
btcec/field.go Normal file

File diff suppressed because it is too large Load diff

744
btcec/field_test.go Normal file
View file

@ -0,0 +1,744 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Copyright (c) 2013-2014 Dave Collins
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"reflect"
"testing"
"github.com/btcsuite/btcd/btcec"
)
// TestSetInt ensures that setting a field value to various native integers
// works as expected.
func TestSetInt(t *testing.T) {
tests := []struct {
in uint
raw [10]uint32
}{
{5, [10]uint32{5, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^26
{67108864, [10]uint32{67108864, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^26 + 1
{67108865, [10]uint32{67108865, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^32 - 1
{4294967295, [10]uint32{4294967295, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetInt(test.in)
result := f.TstRawInts()
if !reflect.DeepEqual(result, test.raw) {
t.Errorf("fieldVal.Set #%d wrong result\ngot: %v\n"+
"want: %v", i, result, test.raw)
continue
}
}
}
// TestZero ensures that zeroing a field value zero works as expected.
func TestZero(t *testing.T) {
f := btcec.NewFieldVal().SetInt(2)
f.Zero()
for idx, rawInt := range f.TstRawInts() {
if rawInt != 0 {
t.Errorf("internal field integer at index #%d is not "+
"zero - got %d", idx, rawInt)
}
}
}
// TestIsZero ensures that checking if a field IsZero works as expected.
func TestIsZero(t *testing.T) {
f := btcec.NewFieldVal()
if !f.IsZero() {
t.Errorf("new field value is not zero - got %v (rawints %x)", f,
f.TstRawInts())
}
f.SetInt(1)
if f.IsZero() {
t.Errorf("field claims it's zero when it's not - got %v "+
"(raw rawints %x)", f, f.TstRawInts())
}
f.Zero()
if !f.IsZero() {
t.Errorf("field claims it's not zero when it is - got %v "+
"(raw rawints %x)", f, f.TstRawInts())
}
}
// TestStringer ensures the stringer returns the appropriate hex string.
func TestStringer(t *testing.T) {
tests := []struct {
in string
expected string
}{
{"0", "0000000000000000000000000000000000000000000000000000000000000000"},
{"1", "0000000000000000000000000000000000000000000000000000000000000001"},
{"a", "000000000000000000000000000000000000000000000000000000000000000a"},
{"b", "000000000000000000000000000000000000000000000000000000000000000b"},
{"c", "000000000000000000000000000000000000000000000000000000000000000c"},
{"d", "000000000000000000000000000000000000000000000000000000000000000d"},
{"e", "000000000000000000000000000000000000000000000000000000000000000e"},
{"f", "000000000000000000000000000000000000000000000000000000000000000f"},
{"f0", "00000000000000000000000000000000000000000000000000000000000000f0"},
// 2^26-1
{
"3ffffff",
"0000000000000000000000000000000000000000000000000000000003ffffff",
},
// 2^32-1
{
"ffffffff",
"00000000000000000000000000000000000000000000000000000000ffffffff",
},
// 2^64-1
{
"ffffffffffffffff",
"000000000000000000000000000000000000000000000000ffffffffffffffff",
},
// 2^96-1
{
"ffffffffffffffffffffffff",
"0000000000000000000000000000000000000000ffffffffffffffffffffffff",
},
// 2^128-1
{
"ffffffffffffffffffffffffffffffff",
"00000000000000000000000000000000ffffffffffffffffffffffffffffffff",
},
// 2^160-1
{
"ffffffffffffffffffffffffffffffffffffffff",
"000000000000000000000000ffffffffffffffffffffffffffffffffffffffff",
},
// 2^192-1
{
"ffffffffffffffffffffffffffffffffffffffffffffffff",
"0000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff",
},
// 2^224-1
{
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
},
// 2^256-4294968273 (the btcec prime, so should result in 0)
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
"0000000000000000000000000000000000000000000000000000000000000000",
},
// 2^256-4294968274 (the secp256k1 prime+1, so should result in 1)
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30",
"0000000000000000000000000000000000000000000000000000000000000001",
},
// Invalid hex
{"g", "0000000000000000000000000000000000000000000000000000000000000000"},
{"1h", "0000000000000000000000000000000000000000000000000000000000000000"},
{"i1", "0000000000000000000000000000000000000000000000000000000000000000"},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in)
result := f.String()
if result != test.expected {
t.Errorf("fieldVal.String #%d wrong result\ngot: %v\n"+
"want: %v", i, result, test.expected)
continue
}
}
}
// TestNormalize ensures that normalizing the internal field words works as
// expected.
func TestNormalize(t *testing.T) {
tests := []struct {
raw [10]uint32 // Intentionally denormalized value
normalized [10]uint32 // Normalized form of the raw value
}{
{
[10]uint32{0x00000005, 0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000005, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^26
{
[10]uint32{0x04000000, 0x0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x1, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^26 + 1
{
[10]uint32{0x04000001, 0x0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x1, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32 - 1
{
[10]uint32{0xffffffff, 0x00, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32
{
[10]uint32{0x04000000, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x40, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32 + 1
{
[10]uint32{0x04000001, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x40, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xfc0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0xfff, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64
{
[10]uint32{0x04000000, 0x03ffffff, 0x0fff, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x1000, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64 + 1
{
[10]uint32{0x04000001, 0x03ffffff, 0x0fff, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x00000000, 0x1000, 0, 0, 0, 0, 0, 0, 0},
},
// 2^96 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0x3ffc0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0x03ffffff, 0x3ffff, 0, 0, 0, 0, 0, 0},
},
// 2^96
{
[10]uint32{0x04000000, 0x03ffffff, 0x03ffffff, 0x3ffff, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x40000, 0, 0, 0, 0, 0, 0},
},
// 2^128 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffc0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0xffffff, 0, 0, 0, 0, 0},
},
// 2^128
{
[10]uint32{0x04000000, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x0ffffff, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x1000000, 0, 0, 0, 0, 0},
},
// 2^256 - 4294968273 (secp256k1 prime)
{
[10]uint32{0xfffffc2f, 0xffffff80, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
// 2^256 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x000003d0, 0x00000040, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().TstSetRawInts(test.raw).Normalize()
result := f.TstRawInts()
if !reflect.DeepEqual(result, test.normalized) {
t.Errorf("fieldVal.Set #%d wrong normalized result\n"+
"got: %x\nwant: %x", i, result, test.normalized)
continue
}
}
}
// TestIsOdd ensures that checking if a field value IsOdd works as expected.
func TestIsOdd(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected bool // expected oddness
}{
{"0", false},
{"1", true},
{"2", false},
// 2^32 - 1
{"ffffffff", true},
// 2^64 - 2
{"fffffffffffffffe", false},
// secp256k1 prime
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", true},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in)
result := f.IsOdd()
if result != test.expected {
t.Errorf("fieldVal.IsOdd #%d wrong result\n"+
"got: %v\nwant: %v", i, result, test.expected)
continue
}
}
}
// TestEquals ensures that checking two field values for equality via Equals
// works as expected.
func TestEquals(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 string // hex encoded value
expected bool // expected equality
}{
{"0", "0", true},
{"0", "1", false},
{"1", "0", false},
// 2^32 - 1 == 2^32 - 1?
{"ffffffff", "ffffffff", true},
// 2^64 - 1 == 2^64 - 2?
{"ffffffffffffffff", "fffffffffffffffe", false},
// 0 == prime (mod prime)?
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", true},
// 1 == prime+1 (mod prime)?
{"1", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30", true},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
f2 := btcec.NewFieldVal().SetHex(test.in2).Normalize()
result := f.Equals(f2)
if result != test.expected {
t.Errorf("fieldVal.Equals #%d wrong result\n"+
"got: %v\nwant: %v", i, result, test.expected)
continue
}
}
}
// TestNegate ensures that negating field values via Negate works as expected.
func TestNegate(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1"},
{"1", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e"},
// secp256k1 prime-2
{"2", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d", "2"},
// Random sampling
{
"b3d9aac9c5e43910b4385b53c7e78c21d4cd5f8e683c633aed04c233efc2e120",
"4c2655363a1bc6ef4bc7a4ac381873de2b32a07197c39cc512fb3dcb103d1b0f",
},
{
"f8a85984fee5a12a7c8dd08830d83423c937d77c379e4a958e447a25f407733f",
"757a67b011a5ed583722f77cf27cbdc36c82883c861b56a71bb85d90bf888f0",
},
{
"45ee6142a7fda884211e93352ed6cb2807800e419533be723a9548823ece8312",
"ba119ebd5802577bdee16ccad12934d7f87ff1be6acc418dc56ab77cc131791d",
},
{
"53c2a668f07e411a2e473e1c3b6dcb495dec1227af27673761d44afe5b43d22b",
"ac3d59970f81bee5d1b8c1e3c49234b6a213edd850d898c89e2bb500a4bc2a04",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Negate(1).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Negate #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAddInt ensures that adding an integer to field values via AddInt works as
// expected.
func TestAddInt(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 uint // unsigned integer to add to the value above
expected string // expected hex encoded value
}{
{"0", 1, "1"},
{"1", 0, "1"},
{"1", 1, "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", 1, "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 1, "1"},
// Random samples.
{
"ff95ad9315aff04ab4af0ce673620c7145dc85d03bab5ba4b09ca2c4dec2d6c1",
0x10f,
"ff95ad9315aff04ab4af0ce673620c7145dc85d03bab5ba4b09ca2c4dec2d7d0",
},
{
"44bdae6b772e7987941f1ba314e6a5b7804a4c12c00961b57d20f41deea9cecf",
0x2cf11d41,
"44bdae6b772e7987941f1ba314e6a5b7804a4c12c00961b57d20f41e1b9aec10",
},
{
"88c3ecae67b591935fb1f6a9499c35315ffad766adca665c50b55f7105122c9c",
0x4829aa2d,
"88c3ecae67b591935fb1f6a9499c35315ffad766adca665c50b55f714d3bd6c9",
},
{
"8523e9edf360ca32a95aae4e57fcde5a542b471d08a974d94ea0ee09a015e2a6",
0xa21265a5,
"8523e9edf360ca32a95aae4e57fcde5a542b471d08a974d94ea0ee0a4228484b",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.AddInt(test.in2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.AddInt #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAdd ensures that adding two field values together via Add works as
// expected.
func TestAdd(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to add
expected string // expected hex encoded value
}{
{"0", "1", "1"},
{"1", "0", "1"},
{"1", "1", "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1", "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "1", "1"},
// Random samples.
{
"2b2012f975404e5065b4292fb8bed0a5d315eacf24c74d8b27e73bcc5430edcc",
"2c3cefa4e4753e8aeec6ac4c12d99da4d78accefda3b7885d4c6bab46c86db92",
"575d029e59b58cdb547ad57bcb986e4aaaa0b7beff02c610fcadf680c0b7c95e",
},
{
"8131e8722fe59bb189692b96c9f38de92885730f1dd39ab025daffb94c97f79c",
"ff5454b765f0aab5f0977dcc629becc84cabeb9def48e79c6aadb2622c490fa9",
"80863d2995d646677a00a9632c8f7ab175315ead0d1c824c9088b21c78e10b16",
},
{
"c7c95e93d0892b2b2cdd77e80eb646ea61be7a30ac7e097e9f843af73fad5c22",
"3afe6f91a74dfc1c7f15c34907ee981656c37236d946767dd53ccad9190e437c",
"02c7ce2577d72747abf33b3116a4df00b881ec6785c47ffc74c105d158bba36f",
},
{
"fd1c26f6a23381e5d785ba889494ec059369b888ad8431cd67d8c934b580dbe1",
"a475aa5a31dcca90ef5b53c097d9133d6b7117474b41e7877bb199590fc0489c",
"a191d150d4104c76c6e10e492c6dff42fedacfcff8c61954e38a628ec541284e",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
f2 := btcec.NewFieldVal().SetHex(test.in2).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Add(f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Add #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAdd2 ensures that adding two field values together via Add2 works as
// expected.
func TestAdd2(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to add
expected string // expected hex encoded value
}{
{"0", "1", "1"},
{"1", "0", "1"},
{"1", "1", "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1", "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "1", "1"},
// Random samples.
{
"ad82b8d1cc136e23e9fd77fe2c7db1fe5a2ecbfcbde59ab3529758334f862d28",
"4d6a4e95d6d61f4f46b528bebe152d408fd741157a28f415639347a84f6f574b",
"faed0767a2e98d7330b2a0bcea92df3eea060d12380e8ec8b62a9fdb9ef58473",
},
{
"f3f43a2540054a86e1df98547ec1c0e157b193e5350fb4a3c3ea214b228ac5e7",
"25706572592690ea3ddc951a1b48b504a4c83dc253756e1b96d56fdfb3199522",
"19649f97992bdb711fbc2d6e9a0a75e5fc79d1a7888522bf5abf912bd5a45eda",
},
{
"6915bb94eef13ff1bb9b2633d997e13b9b1157c713363cc0e891416d6734f5b8",
"11f90d6ac6fe1c4e8900b1c85fb575c251ec31b9bc34b35ada0aea1c21eded22",
"7b0ec8ffb5ef5c40449bd7fc394d56fdecfd8980cf6af01bc29c2b898922e2da",
},
{
"48b0c9eae622eed9335b747968544eb3e75cb2dc8128388f948aa30f88cabde4",
"0989882b52f85f9d524a3a3061a0e01f46d597839d2ba637320f4b9510c8d2d5",
"523a5216391b4e7685a5aea9c9f52ed32e324a601e53dec6c699eea4999390b9",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
f2 := btcec.NewFieldVal().SetHex(test.in2).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Add2(f, f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Add2 #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestMulInt ensures that adding an integer to field values via MulInt works as
// expected.
func TestMulInt(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 uint // unsigned integer to multiply with value above
expected string // expected hex encoded value
}{
{"0", 0, "0"},
{"1", 0, "0"},
{"0", 1, "0"},
{"1", 1, "1"},
// secp256k1 prime-1 * 2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
2,
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
},
// secp256k1 prime * 3
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 3, "0"},
// secp256k1 prime-1 * 8
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
8,
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc27",
},
// Random samples for first value. The second value is limited
// to 8 since that is the maximum int used in the elliptic curve
// calculations.
{
"b75674dc9180d306c692163ac5e089f7cef166af99645c0c23568ab6d967288a",
6,
"4c06bd2b6904f228a76c8560a3433bced9a8681d985a2848d407404d186b0280",
},
{
"54873298ac2b5ba8591c125ae54931f5ea72040aee07b208d6135476fb5b9c0e",
3,
"fd9597ca048212f90b543710afdb95e1bf560c20ca17161a8239fd64f212d42a",
},
{
"7c30fbd363a74c17e1198f56b090b59bbb6c8755a74927a6cba7a54843506401",
5,
"6cf4eb20f2447c77657fccb172d38c0aa91ea4ac446dc641fa463a6b5091fba7",
},
{
"fb4529be3e027a3d1587d8a500b72f2d312e3577340ef5175f96d113be4c2ceb",
8,
"da294df1f013d1e8ac3ec52805b979698971abb9a077a8bafcb688a4f261820f",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.MulInt(test.in2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.MulInt #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestMul ensures that multiplying two field valuess via Mul works as expected.
func TestMul(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to multiply with
expected string // expected hex encoded value
}{
{"0", "0", "0"},
{"1", "0", "0"},
{"0", "1", "0"},
{"1", "1", "1"},
// secp256k1 prime-1 * 2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"2",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
},
// secp256k1 prime * 3
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "3", "0"},
// secp256k1 prime-1 * 8
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"8",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc27",
},
// Random samples.
{
"cfb81753d5ef499a98ecc04c62cb7768c2e4f1740032946db1c12e405248137e",
"58f355ad27b4d75fb7db0442452e732c436c1f7c5a7c4e214fa9cc031426a7d3",
"1018cd2d7c2535235b71e18db9cd98027386328d2fa6a14b36ec663c4c87282b",
},
{
"26e9d61d1cdf3920e9928e85fa3df3e7556ef9ab1d14ec56d8b4fc8ed37235bf",
"2dfc4bbe537afee979c644f8c97b31e58be5296d6dbc460091eae630c98511cf",
"da85f48da2dc371e223a1ae63bd30b7e7ee45ae9b189ac43ff357e9ef8cf107a",
},
{
"5db64ed5afb71646c8b231585d5b2bf7e628590154e0854c4c29920b999ff351",
"279cfae5eea5d09ade8e6a7409182f9de40981bc31c84c3d3dfe1d933f152e9a",
"2c78fbae91792dd0b157abe3054920049b1879a7cc9d98cfda927d83be411b37",
},
{
"b66dfc1f96820b07d2bdbd559c19319a3a73c97ceb7b3d662f4fe75ecb6819e6",
"bf774aba43e3e49eb63a6e18037d1118152568f1a3ac4ec8b89aeb6ff8008ae1",
"c4f016558ca8e950c21c3f7fc15f640293a979c7b01754ee7f8b3340d4902ebb",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in1).Normalize()
f2 := btcec.NewFieldVal().SetHex(test.in2).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Mul(f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Mul #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestSquare ensures that squaring field values via Square works as expected.
func TestSquare(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1"},
// secp256k1 prime-2
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d", "4"},
// Random sampling
{
"b0ba920360ea8436a216128047aab9766d8faf468895eb5090fc8241ec758896",
"133896b0b69fda8ce9f648b9a3af38f345290c9eea3cbd35bafcadf7c34653d3",
},
{
"c55d0d730b1d0285a1599995938b042a756e6e8857d390165ffab480af61cbd5",
"cd81758b3f5877cbe7e5b0a10cebfa73bcbf0957ca6453e63ee8954ab7780bee",
},
{
"e89c1f9a70d93651a1ba4bca5b78658f00de65a66014a25544d3365b0ab82324",
"39ffc7a43e5dbef78fd5d0354fb82c6d34f5a08735e34df29da14665b43aa1f",
},
{
"7dc26186079d22bcbe1614aa20ae627e62d72f9be7ad1e99cac0feb438956f05",
"bf86bcfc4edb3d81f916853adfda80c07c57745b008b60f560b1912f95bce8ae",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Square().Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Square #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestInverse ensures that finding the multiplicative inverse via Inverse works
// as expected.
func TestInverse(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
},
// secp256k1 prime-2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffff7ffffe17",
},
// Random sampling
{
"16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca",
"987aeb257b063df0c6d1334051c47092b6d8766c4bf10c463786d93f5bc54354",
},
{
"69d1323ce9f1f7b3bd3c7320b0d6311408e30281e273e39a0d8c7ee1c8257919",
"49340981fa9b8d3dad72de470b34f547ed9179c3953797d0943af67806f4bb6",
},
{
"e0debf988ae098ecda07d0b57713e97c6d213db19753e8c95aa12a2fc1cc5272",
"64f58077b68af5b656b413ea366863f7b2819f8d27375d9c4d9804135ca220c2",
},
{
"dcd394f91f74c2ba16aad74a22bb0ed47fe857774b8f2d6c09e28bfb14642878",
"fb848ec64d0be572a63c38fe83df5e7f3d032f60bf8c969ef67d36bf4ada22a9",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := btcec.NewFieldVal().SetHex(test.in).Normalize()
expected := btcec.NewFieldVal().SetHex(test.expected).Normalize()
result := f.Inverse().Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Inverse #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}

54
btcec/genprecomps.go Normal file
View file

@ -0,0 +1,54 @@
// Copyright 2015 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// It is called by go generate and used to automatically generate pre-computed
// tables used to accelerate operations.
// +build ignore
package main
import (
"bytes"
"compress/zlib"
"encoding/base64"
"fmt"
"log"
"os"
"github.com/btcsuite/btcd/btcec"
)
func main() {
fi, err := os.Create("secp256k1.go")
if err != nil {
log.Fatal(err)
}
defer fi.Close()
// Compress the serialized byte points.
serialized := btcec.S256().SerializedBytePoints()
var compressed bytes.Buffer
w := zlib.NewWriter(&compressed)
if _, err := w.Write(serialized); err != nil {
fmt.Println(err)
os.Exit(1)
}
w.Close()
// Encode the compressed byte points with base64.
encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
base64.StdEncoding.Encode(encoded, compressed.Bytes())
fmt.Fprintln(fi, "// Copyright (c) 2015 Conformal Systems LLC.")
fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "package btcec")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
fmt.Fprintln(fi, "// DO NOT EDIT")
fmt.Fprintln(fi)
fmt.Fprintf(fi, "var secp256k1BytePoints = []byte(%q)\n", encoded)
}

73
btcec/gensecp256k1.go Normal file
View file

@ -0,0 +1,73 @@
// Copyright (c) 2014-2015 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// This build tag is set during go generate.
// +build gensecp256k1
package btcec
import "encoding/binary"
// secp256k1BytePoints are dummy points used so the code which generates the
// real values can compile.
var secp256k1BytePoints = []byte{}
// getDoublingPoints returns all the possible G^(2^i) for i in
// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
// the coordinates are recorded as Jacobian coordinates.
func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
doublingPoints := make([][3]fieldVal, curve.BitSize)
// initialize px, py, pz to the Jacobian coordinates for the base point
px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
pz := new(fieldVal).SetInt(1)
for i := 0; i < bitSize; i++ {
doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
// P = 2*P
curve.doubleJacobian(px, py, pz, px, py, pz)
}
return doublingPoints
}
// SerializedBytePoints returns a serialized byte slice which contains all of
// the possible points per 8-bit window. This is used to when generating
// secp256k1.go.
func (curve *KoblitzCurve) SerializedBytePoints() []byte {
doublingPoints := curve.getDoublingPoints()
// Segregate the bits into byte-sized windows
serialized := make([]byte, curve.byteSize*256*3*10*4)
offset := 0
for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
// Grab the 8 bits that make up this byte from doublingPoints.
startingBit := 8 * (curve.byteSize - byteNum - 1)
computingPoints := doublingPoints[startingBit : startingBit+8]
// Compute all points in this window and serialize them.
for i := 0; i < 256; i++ {
px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
for j := 0; j < 8; j++ {
if i>>uint(j)&1 == 1 {
curve.addJacobian(px, py, pz, &computingPoints[j][0],
&computingPoints[j][1], &computingPoints[j][2], px, py, pz)
}
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
offset += 4
}
}
}
return serialized
}

71
btcec/internal_test.go Normal file
View file

@ -0,0 +1,71 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"math/big"
)
const (
TstPubkeyUncompressed = pubkeyUncompressed
TstPubkeyCompressed = pubkeyCompressed
TstPubkeyHybrid = pubkeyHybrid
)
// TstRawInts allows the test package to get the integers from the internal
// field representation for ensuring correctness. It is only available during
// the tests.
func (f *fieldVal) TstRawInts() [10]uint32 {
return f.n
}
// TstSetRawInts allows the test package to directly set the integers used by
// the internal field representation. It is only available during the tests.
func (f *fieldVal) TstSetRawInts(raw [10]uint32) *fieldVal {
for i := 0; i < len(raw); i++ {
f.n[i] = raw[i]
}
return f
}
// TstFieldJacobianToBigAffine makes the internal fieldJacobianToBigAffine
// function available to the test package.
func (curve *KoblitzCurve) TstFieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
return curve.fieldJacobianToBigAffine(x, y, z)
}
// TstIsJacobianOnCurve returns boolean if the point (x,y,z) is on the curve.
func (curve *KoblitzCurve) TstIsJacobianOnCurve(x, y, z *fieldVal) bool {
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
// Thus:
// (y/z^3)^2 = (x/z^2)^3 + 7
// y^2/z^6 = x^3/z^6 + 7
// y^2 = x^3 + 7*z^6
var y2, z2, x3, result fieldVal
y2.SquareVal(y).Normalize()
z2.SquareVal(z)
x3.SquareVal(x).Mul(x)
result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
return y2.Equals(&result)
}
// TstAddJacobian makes the internal addJacobian function available to the test
// package.
func (curve *KoblitzCurve) TstAddJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
curve.addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
// TstDoubleJacobian makes the internal doubleJacobian function available to the test
// package.
func (curve *KoblitzCurve) TstDoubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
}
// NewFieldVal returns a new field value set to 0. This is only available to
// the test package.
func NewFieldVal() *fieldVal {
return new(fieldVal)
}

71
btcec/precompute.go Normal file
View file

@ -0,0 +1,71 @@
// Copyright 2015 Conformal Systems LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcec
import (
"bytes"
"compress/zlib"
"encoding/base64"
"encoding/binary"
"io/ioutil"
)
//go:generate go run -tags gensecp256k1 genprecomps.go
// loadS256BytePoints decompresses and deserializes the pre-computed byte points
// used to accelerate scalar base multiplication for the secp256k1 curve. This
// approach is used since it allows the compile to use significantly less ram
// and be performed much faster than it is with hard-coding the final in-memory
// data structure. At the same time, it is quite fast to generate the in-memory
// data structure at init time with this approach versus computing the table.
func loadS256BytePoints() error {
// There will be no byte points to load when generating them.
bp := secp256k1BytePoints
if len(secp256k1BytePoints) == 0 {
return nil
}
// Decompress the pre-computed table used to accelerate scalar base
// multiplication.
decoded := make([]byte, base64.StdEncoding.DecodedLen(len(bp)))
if _, err := base64.StdEncoding.Decode(decoded, bp); err != nil {
return err
}
r, err := zlib.NewReader(bytes.NewReader(decoded))
if err != nil {
return err
}
serialized, err := ioutil.ReadAll(r)
if err != nil {
return err
}
// Deserialize the precomputed byte points and set the curve to them.
offset := 0
var bytePoints [32][256][3]fieldVal
for byteNum := 0; byteNum < 32; byteNum++ {
// All points in this window.
for i := 0; i < 256; i++ {
px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
for i := 0; i < 10; i++ {
px.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
for i := 0; i < 10; i++ {
py.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
for i := 0; i < 10; i++ {
pz.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
bytePoints[byteNum][i][0] = *px
bytePoints[byteNum][i][1] = *py
bytePoints[byteNum][i][2] = *pz
}
}
secp256k1.bytePoints = &bytePoints
return nil
}

74
btcec/privkey.go Normal file
View file

@ -0,0 +1,74 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/ecdsa"
"crypto/rand"
"math/big"
)
// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing
// things with the the private key without having to directly import the ecdsa
// package.
type PrivateKey ecdsa.PrivateKey
// PrivKeyFromBytes returns a private and public key for `curve' based on the
// private key passed as an argument as a byte slice.
func PrivKeyFromBytes(curve *KoblitzCurve, pk []byte) (*PrivateKey,
*PublicKey) {
x, y := curve.ScalarBaseMult(pk)
priv := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: curve,
X: x,
Y: y,
},
D: new(big.Int).SetBytes(pk),
}
return (*PrivateKey)(priv), (*PublicKey)(&priv.PublicKey)
}
// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey
// instead of the normal ecdsa.PrivateKey.
func NewPrivateKey(curve *KoblitzCurve) (*PrivateKey, error) {
key, err := ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
return nil, err
}
return (*PrivateKey)(key), nil
}
// PubKey returns the PublicKey corresponding to this private key.
func (p *PrivateKey) PubKey() *PublicKey {
return (*PublicKey)(&p.PublicKey)
}
// ToECDSA returns the private key as a *ecdsa.PrivateKey.
func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
return (*ecdsa.PrivateKey)(p)
}
// Sign wraps ecdsa.Sign to sign the provided hash (which should be the result
// of hashing a larger message) using the private key.
func (p *PrivateKey) Sign(hash []byte) (*Signature, error) {
r, s, err := ecdsa.Sign(rand.Reader, p.ToECDSA(), hash)
if err != nil {
return nil, err
}
return &Signature{R: r, S: s}, nil
}
// PrivKeyBytesLen defines the length in bytes of a serialized private key.
const PrivKeyBytesLen = 32
// Serialize returns the private key number d as a big-endian binary-encoded
// number, padded to a length of 32 bytes.
func (p *PrivateKey) Serialize() []byte {
b := make([]byte, 0, PrivKeyBytesLen)
return paddedAppend(PrivKeyBytesLen, b, p.ToECDSA().D.Bytes())
}

58
btcec/privkey_test.go Normal file
View file

@ -0,0 +1,58 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"bytes"
"testing"
"github.com/btcsuite/btcd/btcec"
)
func TestPrivKeys(t *testing.T) {
tests := []struct {
name string
key []byte
}{
{
name: "check curve",
key: []byte{
0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6,
0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c,
0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9,
0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94,
},
},
}
for _, test := range tests {
priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key)
_, err := btcec.ParsePubKey(
pub.SerializeUncompressed(), btcec.S256())
if err != nil {
t.Errorf("%s privkey: %v", test.name, err)
continue
}
hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
sig, err := priv.Sign(hash)
if err != nil {
t.Errorf("%s could not sign: %v", test.name, err)
continue
}
if !sig.Verify(hash, pub) {
t.Errorf("%s could not verify: %v", test.name, err)
continue
}
serializedKey := priv.Serialize()
if !bytes.Equal(serializedKey, test.key) {
t.Errorf("%s unexpected serialized bytes - got: %x, "+
"want: %x", test.name, serializedKey, test.key)
}
}
}

164
btcec/pubkey.go Normal file
View file

@ -0,0 +1,164 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/ecdsa"
"errors"
"fmt"
"math/big"
)
// These constants define the lengths of serialized public keys.
const (
PubKeyBytesLenCompressed = 33
PubKeyBytesLenUncompressed = 65
PubKeyBytesLenHybrid = 65
)
func isOdd(a *big.Int) bool {
return a.Bit(0) == 1
}
// decompressPoint decompresses a point on the given curve given the X point and
// the solution to use.
func decompressPoint(curve *KoblitzCurve, x *big.Int, ybit bool) (*big.Int, error) {
// TODO(oga) This will probably only work for secp256k1 due to
// optimisations.
// Y = +-sqrt(x^3 + B)
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
x3.Add(x3, curve.Params().B)
// now calculate sqrt mod p of x2 + B
// This code used to do a full sqrt based on tonelli/shanks,
// but this was replaced by the algorithms referenced in
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
y := new(big.Int).Exp(x3, curve.QPlus1Div4(), curve.Params().P)
if ybit != isOdd(y) {
y.Sub(curve.Params().P, y)
}
if ybit != isOdd(y) {
return nil, fmt.Errorf("ybit doesn't match oddness")
}
return y, nil
}
const (
pubkeyCompressed byte = 0x2 // y_bit + x coord
pubkeyUncompressed byte = 0x4 // x coord + y coord
pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord
)
// ParsePubKey parses a public key for a koblitz curve from a bytestring into a
// ecdsa.Publickey, verifying that it is valid. It supports compressed,
// uncompressed and hybrid signature formats.
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error) {
pubkey := PublicKey{}
pubkey.Curve = curve
if len(pubKeyStr) == 0 {
return nil, errors.New("pubkey string is empty")
}
format := pubKeyStr[0]
ybit := (format & 0x1) == 0x1
format &= ^byte(0x1)
switch len(pubKeyStr) {
case PubKeyBytesLenUncompressed:
if format != pubkeyUncompressed && format != pubkeyHybrid {
return nil, fmt.Errorf("invalid magic in pubkey str: "+
"%d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
// hybrid keys have extra information, make use of it.
if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
return nil, fmt.Errorf("ybit doesn't match oddness")
}
case PubKeyBytesLenCompressed:
// format is 0x2 | solution, <X coordinate>
// solution determines which solution of the curve we use.
/// y^2 = x^3 + Curve.B
if format != pubkeyCompressed {
return nil, fmt.Errorf("invalid magic in compressed "+
"pubkey string: %d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
pubkey.Y, err = decompressPoint(curve, pubkey.X, ybit)
if err != nil {
return nil, err
}
default: // wrong!
return nil, fmt.Errorf("invalid pub key length %d",
len(pubKeyStr))
}
if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, fmt.Errorf("pubkey X parameter is >= to P")
}
if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, fmt.Errorf("pubkey Y parameter is >= to P")
}
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
return nil, fmt.Errorf("pubkey isn't on secp265k1 curve")
}
return &pubkey, nil
}
// PublicKey is an ecdsa.PublicKey with additional functions to
// serialize in uncompressed, compressed, and hybrid formats.
type PublicKey ecdsa.PublicKey
// ToECDSA returns the public key as a *ecdsa.PublicKey.
func (p *PublicKey) ToECDSA() *ecdsa.PublicKey {
return (*ecdsa.PublicKey)(p)
}
// SerializeUncompressed serializes a public key in a 65-byte uncompressed
// format.
func (p *PublicKey) SerializeUncompressed() []byte {
b := make([]byte, 0, PubKeyBytesLenUncompressed)
b = append(b, pubkeyUncompressed)
b = paddedAppend(32, b, p.X.Bytes())
return paddedAppend(32, b, p.Y.Bytes())
}
// SerializeCompressed serializes a public key in a 33-byte compressed format.
func (p *PublicKey) SerializeCompressed() []byte {
b := make([]byte, 0, PubKeyBytesLenCompressed)
format := pubkeyCompressed
if isOdd(p.Y) {
format |= 0x1
}
b = append(b, format)
return paddedAppend(32, b, p.X.Bytes())
}
// SerializeHybrid serializes a public key in a 65-byte hybrid format.
func (p *PublicKey) SerializeHybrid() []byte {
b := make([]byte, 0, PubKeyBytesLenHybrid)
format := pubkeyHybrid
if isOdd(p.Y) {
format |= 0x1
}
b = append(b, format)
b = paddedAppend(32, b, p.X.Bytes())
return paddedAppend(32, b, p.Y.Bytes())
}
// paddedAppend appends the src byte slice to dst, returning the new slice.
// If the length of the source is smaller than the passed size, leading zero
// bytes are appended to the dst slice before appending src.
func paddedAppend(size uint, dst, src []byte) []byte {
for i := 0; i < int(size)-len(src); i++ {
dst = append(dst, 0)
}
return append(dst, src...)
}

235
btcec/pubkey_test.go Normal file
View file

@ -0,0 +1,235 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"bytes"
"testing"
"github.com/btcsuite/btcd/btcec"
"github.com/davecgh/go-spew/spew"
)
type pubKeyTest struct {
name string
key []byte
format byte
isValid bool
}
var pubKeyTests = []pubKeyTest{
// pubkey from bitcoin blockchain tx
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
{
name: "uncompressed ok",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: true,
format: btcec.TstPubkeyUncompressed,
},
{
name: "uncompressed x changed",
key: []byte{0x04, 0x15, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "uncompressed y changed",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa4,
},
isValid: false,
},
{
name: "uncompressed claims compressed",
key: []byte{0x03, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "uncompressed as hybrid ok",
key: []byte{0x07, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: true,
format: btcec.TstPubkeyHybrid,
},
{
name: "uncompressed as hybrid wrong",
key: []byte{0x06, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
// from tx 0b09c51c51ff762f00fb26217269d2a18e77a4fa87d69b3c363ab4df16543f20
{
name: "compressed ok (ybit = 0)",
key: []byte{0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
isValid: true,
format: btcec.TstPubkeyCompressed,
},
// from tx fdeb8e72524e8dab0da507ddbaf5f88fe4a933eb10a66bc4745bb0aa11ea393c
{
name: "compressed ok (ybit = 1)",
key: []byte{0x03, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
isValid: true,
format: btcec.TstPubkeyCompressed,
},
{
name: "compressed claims uncompressed (ybit = 0)",
key: []byte{0x04, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
isValid: false,
},
{
name: "compressed claims uncompressed (ybit = 1)",
key: []byte{0x05, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
isValid: false,
},
{
name: "wrong length)",
key: []byte{0x05},
isValid: false,
},
{
name: "X == P",
key: []byte{0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "X > P",
key: []byte{0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFD, 0x2F, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "Y == P",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF,
0xFF, 0xFC, 0x2F,
},
isValid: false,
},
{
name: "Y > P",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF,
0xFF, 0xFD, 0x2F,
},
isValid: false,
},
}
func TestPubKeys(t *testing.T) {
for _, test := range pubKeyTests {
pk, err := btcec.ParsePubKey(test.key, btcec.S256())
if err != nil {
if test.isValid {
t.Errorf("%s pubkey failed when shouldn't %v",
test.name, err)
}
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
continue
}
var pkStr []byte
switch test.format {
case btcec.TstPubkeyUncompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed()
case btcec.TstPubkeyCompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeCompressed()
case btcec.TstPubkeyHybrid:
pkStr = (*btcec.PublicKey)(pk).SerializeHybrid()
}
if !bytes.Equal(test.key, pkStr) {
t.Errorf("%s pubkey: serialized keys do not match.",
test.name)
spew.Dump(test.key)
spew.Dump(pkStr)
}
}
}

10
btcec/secp256k1.go Normal file

File diff suppressed because one or more lines are too long

398
btcec/signature.go Normal file
View file

@ -0,0 +1,398 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/ecdsa"
"crypto/elliptic"
"errors"
"fmt"
"math/big"
)
// Errors returned by canonicalPadding.
var (
errNegativeValue = errors.New("value may be interpreted as negative")
errExcessivelyPaddedValue = errors.New("value is excessively padded")
)
// Signature is a type representing an ecdsa signature.
type Signature struct {
R *big.Int
S *big.Int
}
// curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
var (
order = new(big.Int).Set(S256().N)
halforder = new(big.Int).Rsh(order, 1)
)
// Serialize returns the ECDSA signature in the more strict DER format. Note
// that the serialized bytes returned do not include the appended hash type
// used in Bitcoin signature scripts.
//
// encoding/asn1 is broken so we hand roll this output:
//
// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
func (sig *Signature) Serialize() []byte {
// low 'S' malleability breaker
sigS := sig.S
if sigS.Cmp(halforder) == 1 {
sigS = new(big.Int).Sub(order, sigS)
}
// Ensure the encoded bytes for the r and s values are canonical and
// thus suitable for DER encoding.
rb := canonicalizeInt(sig.R)
sb := canonicalizeInt(sigS)
// total length of returned signature is 1 byte for each magic and
// length (6 total), plus lengths of r and s
length := 6 + len(rb) + len(sb)
b := make([]byte, length, length)
b[0] = 0x30
b[1] = byte(length - 2)
b[2] = 0x02
b[3] = byte(len(rb))
offset := copy(b[4:], rb) + 4
b[offset] = 0x02
b[offset+1] = byte(len(sb))
copy(b[offset+2:], sb)
return b
}
// Verify calls ecdsa.Verify to verify the signature of hash using the public
// key. It returns true if the signature is valid, false otherwise.
func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S)
}
func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) {
// Originally this code used encoding/asn1 in order to parse the
// signature, but a number of problems were found with this approach.
// Despite the fact that signatures are stored as DER, the difference
// between go's idea of a bignum (and that they have sign) doesn't agree
// with the openssl one (where they do not). The above is true as of
// Go 1.1. In the end it was simpler to rewrite the code to explicitly
// understand the format which is this:
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
// <length of S> <S>.
signature := &Signature{}
// minimal message is when both numbers are 1 bytes. adding up to:
// 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
if len(sigStr) < 8 {
return nil, errors.New("malformed signature: too short")
}
// 0x30
index := 0
if sigStr[index] != 0x30 {
return nil, errors.New("malformed signature: no header magic")
}
index++
// length of remaining message
siglen := sigStr[index]
index++
if int(siglen+2) > len(sigStr) {
return nil, errors.New("malformed signature: bad length")
}
// trim the slice we're working on so we only look at what matters.
sigStr = sigStr[:siglen+2]
// 0x02
if sigStr[index] != 0x02 {
return nil,
errors.New("malformed signature: no 1st int marker")
}
index++
// Length of signature R.
rLen := int(sigStr[index])
// must be positive, must be able to fit in another 0x2, <len> <s>
// hence the -3. We assume that the length must be at least one byte.
index++
if rLen <= 0 || rLen > len(sigStr)-index-3 {
return nil, errors.New("malformed signature: bogus R length")
}
// Then R itself.
rBytes := sigStr[index : index+rLen]
if der {
switch err := canonicalPadding(rBytes); err {
case errNegativeValue:
return nil, errors.New("signature R is negative")
case errExcessivelyPaddedValue:
return nil, errors.New("signature R is excessively padded")
}
}
signature.R = new(big.Int).SetBytes(rBytes)
index += rLen
// 0x02. length already checked in previous if.
if sigStr[index] != 0x02 {
return nil, errors.New("malformed signature: no 2nd int marker")
}
index++
// Length of signature S.
sLen := int(sigStr[index])
index++
// S should be the rest of the string.
if sLen <= 0 || sLen > len(sigStr)-index {
return nil, errors.New("malformed signature: bogus S length")
}
// Then S itself.
sBytes := sigStr[index : index+sLen]
if der {
switch err := canonicalPadding(sBytes); err {
case errNegativeValue:
return nil, errors.New("signature S is negative")
case errExcessivelyPaddedValue:
return nil, errors.New("signature S is excessively padded")
}
}
signature.S = new(big.Int).SetBytes(sBytes)
index += sLen
// sanity check length parsing
if index != len(sigStr) {
return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
index, len(sigStr))
}
// Verify also checks this, but we can be more sure that we parsed
// correctly if we verify here too.
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
if signature.R.Sign() != 1 {
return nil, errors.New("signature R isn't 1 or more")
}
if signature.S.Sign() != 1 {
return nil, errors.New("signature S isn't 1 or more")
}
if signature.R.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("signature R is >= curve.N")
}
if signature.S.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("signature S is >= curve.N")
}
return signature, nil
}
// ParseSignature parses a signature in BER format for the curve type `curve'
// into a Signature type, perfoming some basic sanity checks. If parsing
// according to the more strict DER format is needed, use ParseDERSignature.
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
return parseSig(sigStr, curve, false)
}
// ParseDERSignature parses a signature in DER format for the curve type
// `curve` into a Signature type. If parsing according to the less strict
// BER format is needed, use ParseSignature.
func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
return parseSig(sigStr, curve, true)
}
// canonicalizeInt returns the bytes for the passed big integer adjusted as
// necessary to ensure that a big-endian encoded integer can't possibly be
// misinterpreted as a negative number. This can happen when the most
// significant bit is set, so it is padded by a leading zero byte in this case.
// Also, the returned bytes will have at least a single byte when the passed
// value is 0. This is required for DER encoding.
func canonicalizeInt(val *big.Int) []byte {
b := val.Bytes()
if len(b) == 0 {
b = []byte{0x00}
}
if b[0]&0x80 != 0 {
paddedBytes := make([]byte, len(b)+1)
copy(paddedBytes[1:], b)
b = paddedBytes
}
return b
}
// canonicalPadding checks whether a big-endian encoded integer could
// possibly be misinterpreted as a negative number (even though OpenSSL
// treats all numbers as unsigned), or if there is any unnecessary
// leading zero padding.
func canonicalPadding(b []byte) error {
switch {
case b[0]&0x80 == 0x80:
return errNegativeValue
case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
return errExcessivelyPaddedValue
default:
return nil
}
}
// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
// This is borrowed from crypto/ecdsa.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
// recoverKeyFromSignature recoves a public key from the signature "sig" on the
// given message hash "msg". Based on the algorithm found in section 5.1.5 of
// SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details
// in the inner loop in Step 1. The counter provided is actually the j parameter
// of the loop * 2 - on the first iteration of j we do the R case, else the -R
// case in step 1.6. This counter is used in the bitcoin compressed signature
// format and thus we match bitcoind's behaviour here.
func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
iter int, doChecks bool) (*PublicKey, error) {
// 1.1 x = (n * i) + r
Rx := new(big.Int).Mul(curve.Params().N,
new(big.Int).SetInt64(int64(iter/2)))
Rx.Add(Rx, sig.R)
if Rx.Cmp(curve.Params().P) != -1 {
return nil, errors.New("calculated Rx is larger than curve P")
}
// convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd
// iteration then 1.6 will be done with -R, so we calculate the other
// term when uncompressing the point.
Ry, err := decompressPoint(curve, Rx, iter%2 == 1)
if err != nil {
return nil, err
}
// 1.4 Check n*R is point at infinity
if doChecks {
nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes())
if nRx.Sign() != 0 || nRy.Sign() != 0 {
return nil, errors.New("n*R does not equal the point at infinity")
}
}
// 1.5 calculate e from message using the same algorithm as ecdsa
// signature calculation.
e := hashToInt(msg, curve)
// Step 1.6.1:
// We calculate the two terms sR and eG separately multiplied by the
// inverse of r (from the signature). We then add them to calculate
// Q = r^-1(sR-eG)
invr := new(big.Int).ModInverse(sig.R, curve.Params().N)
// first term.
invrS := new(big.Int).Mul(invr, sig.S)
invrS.Mod(invrS, curve.Params().N)
sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes())
// second term.
e.Neg(e)
e.Mod(e, curve.Params().N)
e.Mul(e, invr)
e.Mod(e, curve.Params().N)
minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes())
// TODO(oga) this would be faster if we did a mult and add in one
// step to prevent the jacobian conversion back and forth.
Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy)
return &PublicKey{
Curve: curve,
X: Qx,
Y: Qy,
}, nil
}
// SignCompact produces a compact signature of the data in hash with the given
// private key on the given koblitz curve. The isCompressed parameter should
// be used to detail if the given signature should reference a compressed
// public key or not. If successful the bytes of the compact signature will be
// returned in the format:
// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S>
// where the R and S parameters are padde up to the bitlengh of the curve.
func SignCompact(curve *KoblitzCurve, key *PrivateKey,
hash []byte, isCompressedKey bool) ([]byte, error) {
sig, err := key.Sign(hash)
if err != nil {
return nil, err
}
// bitcoind checks the bit length of R and S here. The ecdsa signature
// algorithm returns R and S mod N therefore they will be the bitsize of
// the curve, and thus correctly sized.
for i := 0; i < (curve.H+1)*2; i++ {
pk, err := recoverKeyFromSignature(curve, sig, hash, i, true)
if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 {
result := make([]byte, 1, 2*curve.byteSize+1)
result[0] = 27 + byte(i)
if isCompressedKey {
result[0] += 4
}
// Not sure this needs rounding but safer to do so.
curvelen := (curve.BitSize + 7) / 8
// Pad R and S to curvelen if needed.
bytelen := (sig.R.BitLen() + 7) / 8
if bytelen < curvelen {
result = append(result,
make([]byte, curvelen-bytelen)...)
}
result = append(result, sig.R.Bytes()...)
bytelen = (sig.S.BitLen() + 7) / 8
if bytelen < curvelen {
result = append(result,
make([]byte, curvelen-bytelen)...)
}
result = append(result, sig.S.Bytes()...)
return result, nil
}
}
return nil, errors.New("no valid solution for pubkey found")
}
// RecoverCompact verifies the compact signature "signature" of "hash" for the
// Koblitz curve in "curve". If the signature matches then the recovered public
// key will be returned as well as a boolen if the original key was compressed
// or not, else an error will be returned.
func RecoverCompact(curve *KoblitzCurve, signature,
hash []byte) (*PublicKey, bool, error) {
bitlen := (curve.BitSize + 7) / 8
if len(signature) != 1+bitlen*2 {
return nil, false, errors.New("invalid compact signature size")
}
iteration := int((signature[0] - 27) & ^byte(4))
// format is <header byte><bitlen R><bitlen S>
sig := &Signature{
R: new(big.Int).SetBytes(signature[1 : bitlen+1]),
S: new(big.Int).SetBytes(signature[bitlen+1:]),
}
// The iteration used here was encoded
key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false)
if err != nil {
return nil, false, err
}
return key, ((signature[0] - 27) & 4) == 4, nil
}

493
btcec/signature_test.go Normal file
View file

@ -0,0 +1,493 @@
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec_test
import (
"bytes"
"crypto/rand"
"fmt"
"math/big"
"testing"
"github.com/btcsuite/btcd/btcec"
)
type signatureTest struct {
name string
sig []byte
der bool
isValid bool
}
var signatureTests = []signatureTest{
// signatures from bitcoin blockchain tx
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
{
name: "valid signature.",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: true,
},
{
name: "empty.",
sig: []byte{},
isValid: false,
},
{
name: "bad magic.",
sig: []byte{0x31, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "bad 1st int marker magic.",
sig: []byte{0x30, 0x44, 0x03, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "bad 2nd int marker.",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x03, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "short len",
sig: []byte{0x30, 0x43, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "long len",
sig: []byte{0x30, 0x45, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "long X",
sig: []byte{0x30, 0x44, 0x02, 0x42, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "long Y",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x21, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "short Y",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x19, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "trailing crap.",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09, 0x01,
},
der: true,
// This test is now passing (used to be failing) because there
// are signatures in the blockchain that have trailing zero
// bytes before the hashtype. So ParseSignature was fixed to
// permit buffers with trailing nonsense after the actual
// signature.
isValid: true,
},
{
name: "X == N ",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48,
0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "X == N ",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48,
0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41,
0x42, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: false,
isValid: false,
},
{
name: "Y == N",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41,
},
der: true,
isValid: false,
},
{
name: "Y > N",
sig: []byte{0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x42,
},
der: false,
isValid: false,
},
{
name: "0 len X.",
sig: []byte{0x30, 0x24, 0x02, 0x00, 0x02, 0x20, 0x18, 0x15,
0x22, 0xec, 0x8e, 0xca, 0x07, 0xde, 0x48, 0x60, 0xa4,
0xac, 0xdd, 0x12, 0x90, 0x9d, 0x83, 0x1c, 0xc5, 0x6c,
0xbb, 0xac, 0x46, 0x22, 0x08, 0x22, 0x21, 0xa8, 0x76,
0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "0 len Y.",
sig: []byte{0x30, 0x24, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x00,
},
der: true,
isValid: false,
},
{
name: "extra R padding.",
sig: []byte{0x30, 0x45, 0x02, 0x21, 0x00, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
{
name: "extra S padding.",
sig: []byte{0x30, 0x45, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x21, 0x00, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca,
0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90,
0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22,
0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
der: true,
isValid: false,
},
// Standard checks (in BER format, without checking for 'canonical' DER
// signatures) don't test for negative numbers here because there isn't
// a way that is the same between openssl and go that will mark a number
// as negative. The Go ASN.1 parser marks numbers as negative when
// openssl does not (it doesn't handle negative numbers that I can tell
// at all. When not parsing DER signatures, which is done by by bitcoind
// when accepting transactions into its mempool, we otherwise only check
// for the coordinates being zero.
{
name: "X == 0",
sig: []byte{0x30, 0x25, 0x02, 0x01, 0x00, 0x02, 0x20, 0x18,
0x15, 0x22, 0xec, 0x8e, 0xca, 0x07, 0xde, 0x48, 0x60,
0xa4, 0xac, 0xdd, 0x12, 0x90, 0x9d, 0x83, 0x1c, 0xc5,
0x6c, 0xbb, 0xac, 0x46, 0x22, 0x08, 0x22, 0x21, 0xa8,
0x76, 0x8d, 0x1d, 0x09,
},
der: false,
isValid: false,
},
{
name: "Y == 0.",
sig: []byte{0x30, 0x25, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1,
0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6,
0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd,
0x41, 0x02, 0x01, 0x00,
},
der: false,
isValid: false,
},
}
func TestSignatures(t *testing.T) {
for _, test := range signatureTests {
var err error
if test.der {
_, err = btcec.ParseDERSignature(test.sig, btcec.S256())
} else {
_, err = btcec.ParseSignature(test.sig, btcec.S256())
}
if err != nil {
if test.isValid {
t.Errorf("%s signature failed when shouldn't %v",
test.name, err)
} /* else {
t.Errorf("%s got error %v", test.name, err)
} */
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
}
}
}
// TestSignatureSerialize ensures that serializing signatures works as expected.
func TestSignatureSerialize(t *testing.T) {
tests := []struct {
name string
ecsig *btcec.Signature
expected []byte
}{
// signature from bitcoin blockchain tx
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
{
"valid 1 - r and s most significant bits are zero",
&btcec.Signature{
R: fromHex("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
S: fromHex("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
},
[]byte{
0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3,
0xa1, 0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32,
0xe9, 0xd6, 0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab,
0x5f, 0xb8, 0xcd, 0x41, 0x02, 0x20, 0x18, 0x15,
0x22, 0xec, 0x8e, 0xca, 0x07, 0xde, 0x48, 0x60,
0xa4, 0xac, 0xdd, 0x12, 0x90, 0x9d, 0x83, 0x1c,
0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22, 0x08, 0x22,
0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09,
},
},
// signature from bitcoin blockchain tx
// cb00f8a0573b18faa8c4f467b049f5d202bf1101d9ef2633bc611be70376a4b4
{
"valid 2 - r most significant bit is one",
&btcec.Signature{
R: fromHex("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
S: fromHex("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
},
[]byte{
0x30, 0x45, 0x02, 0x21, 0x00, 0x82, 0x23, 0x5e,
0x21, 0xa2, 0x30, 0x00, 0x22, 0x73, 0x8d, 0xab,
0xb8, 0xe1, 0xbb, 0xd9, 0xd1, 0x9c, 0xfb, 0x1e,
0x7a, 0xb8, 0xc3, 0x0a, 0x23, 0xb0, 0xaf, 0xbb,
0x8d, 0x17, 0x8a, 0xbc, 0xf3, 0x02, 0x20, 0x24,
0xbf, 0x68, 0xe2, 0x56, 0xc5, 0x34, 0xdd, 0xfa,
0xf9, 0x66, 0xbf, 0x90, 0x8d, 0xeb, 0x94, 0x43,
0x05, 0x59, 0x6f, 0x7b, 0xdc, 0xc3, 0x8d, 0x69,
0xac, 0xad, 0x7f, 0x9c, 0x86, 0x87, 0x24,
},
},
// signature from bitcoin blockchain tx
// fda204502a3345e08afd6af27377c052e77f1fefeaeb31bdd45f1e1237ca5470
{
"valid 3 - s most significant bit is one",
&btcec.Signature{
R: fromHex("1cadddc2838598fee7dc35a12b340c6bde8b389f7bfd19a1252a17c4b5ed2d71"),
S: new(big.Int).Add(fromHex("00c1a251bbecb14b058a8bd77f65de87e51c47e95904f4c0e9d52eddc21c1415ac"), btcec.S256().N),
},
[]byte{
0x30, 0x45, 0x02, 0x20, 0x1c, 0xad, 0xdd, 0xc2,
0x83, 0x85, 0x98, 0xfe, 0xe7, 0xdc, 0x35, 0xa1,
0x2b, 0x34, 0x0c, 0x6b, 0xde, 0x8b, 0x38, 0x9f,
0x7b, 0xfd, 0x19, 0xa1, 0x25, 0x2a, 0x17, 0xc4,
0xb5, 0xed, 0x2d, 0x71, 0x02, 0x21, 0x00, 0xc1,
0xa2, 0x51, 0xbb, 0xec, 0xb1, 0x4b, 0x05, 0x8a,
0x8b, 0xd7, 0x7f, 0x65, 0xde, 0x87, 0xe5, 0x1c,
0x47, 0xe9, 0x59, 0x04, 0xf4, 0xc0, 0xe9, 0xd5,
0x2e, 0xdd, 0xc2, 0x1c, 0x14, 0x15, 0xac,
},
},
{
"zero signature",
&btcec.Signature{
R: big.NewInt(0),
S: big.NewInt(0),
},
[]byte{0x30, 0x06, 0x02, 0x01, 0x00, 0x02, 0x01, 0x00},
},
}
for i, test := range tests {
result := test.ecsig.Serialize()
if !bytes.Equal(result, test.expected) {
t.Errorf("Serialize #%d (%s) unexpected result:\n"+
"got: %x\nwant: %x", i, test.name, result,
test.expected)
}
}
}
func testSignCompact(t *testing.T, tag string, curve *btcec.KoblitzCurve,
data []byte, isCompressed bool) {
tmp, _ := btcec.NewPrivateKey(curve)
priv := (*btcec.PrivateKey)(tmp)
hashed := []byte("testing")
sig, err := btcec.SignCompact(curve, priv, hashed, isCompressed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
pk, wasCompressed, err := btcec.RecoverCompact(curve, sig, hashed)
if err != nil {
t.Errorf("%s: error recovering: %s", tag, err)
return
}
if pk.X.Cmp(priv.X) != 0 || pk.Y.Cmp(priv.Y) != 0 {
t.Errorf("%s: recovered pubkey doesn't match original "+
"(%v,%v) vs (%v,%v) ", tag, pk.X, pk.Y, priv.X, priv.Y)
return
}
if wasCompressed != isCompressed {
t.Errorf("%s: recovered pubkey doesn't match compressed state "+
"(%v vs %v)", tag, isCompressed, wasCompressed)
return
}
// If we change the compressed bit we should get the same key back,
// but the compressed flag should be reversed.
if isCompressed {
sig[0] -= 4
} else {
sig[0] += 4
}
pk, wasCompressed, err = btcec.RecoverCompact(curve, sig, hashed)
if err != nil {
t.Errorf("%s: error recovering (2): %s", tag, err)
return
}
if pk.X.Cmp(priv.X) != 0 || pk.Y.Cmp(priv.Y) != 0 {
t.Errorf("%s: recovered pubkey (2) doesn't match original "+
"(%v,%v) vs (%v,%v) ", tag, pk.X, pk.Y, priv.X, priv.Y)
return
}
if wasCompressed == isCompressed {
t.Errorf("%s: recovered pubkey doesn't match reversed "+
"compressed state (%v vs %v)", tag, isCompressed,
wasCompressed)
return
}
}
func TestSignCompact(t *testing.T) {
for i := 0; i < 256; i++ {
name := fmt.Sprintf("test %d", i)
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Errorf("failed to read random data for %s", name)
continue
}
compressed := i%2 != 0
testSignCompact(t, name, btcec.S256(), data, compressed)
}
}