treap recycle nodes consistently. Rework Immutable treap node recycling
attempting to make it safer in the presence of code that takes snapshots
(dbCacheSnapshot) of the treap. Add special mutable PutM and DeleteM
methods which DB transaction can use to apply changes more efficiently
without creating lots of garbage memory.
Now that all headers are stored in the in-memory index, the database
bucket managed by blockchain, and in the flat files, it makes sense to
drop the redundant data from the block index bucket in ffldb.
To avoid modifying the database interface, this reimplements
FetchBlockHeader(s) to use header data stored in flat files. This can
be trivially implemented by delegating to FetchBlockRegion.
The btclog package has been changed to defining its own logging
interface (rather than seelog's) and provides a default implementation
for callers to use.
There are two primary advantages to the new logger implementation.
First, all log messages are created before the call returns. Compared
to seelog, this prevents data races when mutable variables are logged.
Second, the new logger does not implement any kind of artifical rate
limiting (what seelog refers to as "adaptive logging"). Log messages
are outputted as soon as possible and the application will appear to
perform much better when watching standard output.
Because log rotation is not a feature of the btclog logging
implementation, it is handled by the main package by importing a file
rotation package that provides an io.Reader interface for creating
output to a rotating file output. The rotator has been configured
with the same defaults that btcd previously used in the seelog config
(10MB file limits with maximum of 3 rolls) but now compresses newly
created roll files. Due to the high compressibility of log text, the
compressed files typically reduce to around 15-30% of the original
10MB file.
The github markdown interpreter has been changed such that it no longer
allows spaces in between the brackets and parenthesis of links and now
requires a newline in between anchors and other formatting. This
updates all of the markdown files accordingly.
While here, it also corrects a couple of inconsistencies in some of the
README.md files.
This is mostly a backport of some of the same modifications made in
Decred along with a few additional things cleaned up. In particular,
this updates the code to make use of the new chainhash package.
Also, since this required API changes anyways and the hash algorithm is
no longer tied specifically to SHA, all other functions throughout the
code base which had "Sha" in their name have been changed to Hash so
they are not incorrectly implying the hash algorithm.
The following is an overview of the changes:
- Remove the wire.ShaHash type
- Update all references to wire.ShaHash to the new chainhash.Hash type
- Rename the following functions and update all references:
- wire.BlockHeader.BlockSha -> BlockHash
- wire.MsgBlock.BlockSha -> BlockHash
- wire.MsgBlock.TxShas -> TxHashes
- wire.MsgTx.TxSha -> TxHash
- blockchain.ShaHashToBig -> HashToBig
- peer.ShaFunc -> peer.HashFunc
- Rename all variables that included sha in their name to include hash
instead
- Update for function name changes in other dependent packages such as
btcutil
- Update copyright dates on all modified files
- Update glide.lock file to use the required version of btcutil
First, it removes the documentation section from all the README.md files
and instead puts a web-based godoc badge and link at the top with the
other badges. This is being done since the local godoc tool no longer
ships with Go by default, so the instructions no longer work without
first installing godoc. Due to this, pretty much everyone uses the
web-based godoc these days anyways. Anyone who has manually installed
godoc won't need instructions.
Second, it makes sure the ISC license badge is at the top with the other
badges and removes the textual reference in the overview section.
Finally, it's modifies the Installation section to Installation and
Updating and adds a '-u' to the 'go get' command since it works for both
and thus is simpler.
This commit converts all block height references to int32 instead of
int64. The current target block production rate is 10 mins per block
which means it will take roughly 40,800 years to reach the maximum
height an int32 affords. Even if the target rate were lowered to one
block per minute, it would still take roughly another 4,080 years to
reach the maximum.
In the mean time, there is no reason to use a larger type which results
in higher memory and disk space usage. However, for now, in order to
avoid having to reserialize a bunch of database information, the heights
are still serialized to the database as 8-byte uint64s.
This is being mainly being done in preparation for further upcoming
infrastructure changes which will use the smaller and more efficient
4-byte serialization in the database as well.
This commit removes the error returns from the BlockHeader.BlockSha,
MsgBlock.BlockSha, and MsgTx.TxSha functions since they can never fail and
end up causing a lot of unneeded error checking throughout the code base.
It also updates all call sites for the change.
This commit contains three classes of optimizations:
- Reducing the number of unnecessary hash copies
- Improve the performance of the DoubleSha256 function
- A couple of minor optimizations of the ShaHash functions
The first class is a result of the Bytes function on a ShaHash making a
copy of the bytes before returning them. It really should have been named
CloneBytes, but that would break the API now.
To address this, a comment has been added to the function which explicitly
calls out the copy behavior. In addition, all call sites of .Bytes on a
ShaHash in the code base have been updated to simply slice the array when
a copy is not needed. This saves a significant amount of data copying.
The second optimization modifies the DoubleSha256 function to directly use
fastsha256.Sum256 instead of the hasher interface. This reduces the
number of allocations needed. A benchmark for the function has been added
as well.
old: BenchmarkDoubleSha256 500000 3691 ns/op 192 B/op 3 allocs/op
new: BenchmarkDoubleSha256 500000 3081 ns/op 32 B/op 1 allocs/op
The final optimizations are for the ShaHash IsEqual and SetBytes functions
which have been modified to make use of the fact the type is an array and
remove an unneeded subslice.
- Delete spent TX in setclearSpentData when unspent by block
disconnect on reorg; return an error when there's more than
one record to delete in the spent TX as that should never
happen.
- Test spent TX deletion when reorg causes block disconnect.
- Test for correct NewestSha results after DropAfterBlockBySha.
- Fix DropAfterBlockBySha to update info for NewestSha.
- Updated copyright statements in modified files
Fix#303 by changing the addrindex key prefix to 3 characters so that
it's easy to check length when dropping the index. To drop the old
index, check to make sure we aren't dropping any entries that end in
"sx" or "tx" as those aren't part of the addrindex. Update test to
deal with the new prefix length.
Fix#346 by changing the pointers in the mempool's addrindex map to
wire.ShaHash 32-byte values. This lets them be deleted even if the
transaction data changes places in memory upon expanding the maps.
Change the way addrindex uint32s are stored to big-endian in order to
sort the transactions on disk in chronological/dependency order.
Change the "searchrawtransactions" RPC call to return transactions
from the database before the memory pool so that they're returned in
order. This commit DOES NOT do topological sorting of the memory pool
transactions to ensure they're returned in dependency order. This may
be a good idea for a future enhancement.
Add addrindex versioning to automatically drop the old/incompatible
version of the index and rebuild with the new sort method and key
prefix.
- Use explicit index values for byte slices
- Fix a bug in FetchTxsForAddr that allocated an extra 10 bytes
for each address index
- Add missing iterator release in error path
- Check for iterator errors.
This change converts the leveldb database's ExistsSha() and
ExistsTxSha to use the goleveldb API. Has() only returns if
the key exists and does not need to read the entire value into
memory resulting in less disk i/o and much less GC.