Updated the rpcserver handler for validateaddress JSON-RPC command to
have parity with the bitcoind 0.20.0 interface.
The new fields included are - isscript, iswitness, witness_version, and
witness_program. The scriptPubKey field has been left out since it
requires wallet access.
This update has no impact on the rpcclient.ValidateAddress method,
which uses the btcjson.ValidateAddressWalletResult type for modelling
the response from bitcoind.
This change makes btcd's getblock command match bitcoind's. Previously
the default verbosity was 0, which caused errors when using the
rpcclient library to connect to a bitcoind node - getblock would
unmarshall incorrectly since it didn't expect a verbosity=1 result when
it did not specify verbosity.
Due to differences in how getblock returns data based on the provided verbosity parameter, it's necessary
to have two separate return types based on verbosity. This necessitates a separate unmarshalling function
(represented throughout rpcclient/chain.go as Result.Receive()) to ensure that data is correctly unmarshalled
and returned to the user.
backport of https://github.com/decred/dcrd/pull/1273
Notable difference being that btcd mainline currenlty
doesn't have a blockchain/blockindex_test.go file, so
those changes are omitted.
Great work @davecgh :)
This modifies the utxoset in the database and related UtxoViewpoint to
store and work with unspent transaction outputs on a per-output basis
instead of at a transaction level. This was inspired by similar recent
changes in Bitcoin Core.
The primary motivation is to simplify the code, pave the way for a
utxo cache, and generally focus on optimizing runtime performance.
The tradeoff is that this approach does somewhat increase the size of
the serialized utxoset since it means that the transaction hash is
duplicated for each output as a part of the key and some additional
details such as whether the containing transaction is a coinbase and the
block height it was a part of are duplicated in each output.
However, in practice, the size difference isn't all that large, disk
space is relatively cheap, certainly cheaper than memory, and it is much
more important to provide more efficient runtime operation since that is
the ultimate purpose of the daemon.
While performing this conversion, it also simplifies the code to remove
the transaction version information from the utxoset as well as the
spend journal. The logic for only serializing it under certain
circumstances is complicated and it isn't actually used anywhere aside
from the gettxout RPC where it also isn't used by anything important
either. Consequently, this also removes the version field of the
gettxout RPC result.
The utxos in the database are automatically migrated to the new format
with this commit and it is possible to interrupt and resume the
migration process.
Finally, it also updates the tests for the new format and adds a new
function to the tests to convert the old test data to the new format for
convenience. The data has already been converted and updated in the
commit.
An overview of the changes are as follows:
- Remove transaction version from both spent and unspent output entries
- Update utxo serialization format to exclude the version
- Modify the spend journal serialization format
- The old version field is now reserved and always stores zero and
ignores it when reading
- This allows old entries to be used by new code without having to
migrate the entire spend journal
- Remove version field from gettxout RPC result
- Convert UtxoEntry to represent a specific utxo instead of a
transaction with all remaining utxos
- Optimize for memory usage with an eye towards a utxo cache
- Combine details such as whether the txout was contained in a
coinbase, is spent, and is modified into a single packed field of
bit flags
- Align entry fields to eliminate extra padding since ultimately
there will be a lot of these in memory
- Introduce a free list for serializing an outpoint to the database
key format to significantly reduce pressure on the GC
- Update all related functions that previously dealt with transaction
hashes to accept outpoints instead
- Update all callers accordingly
- Only add individually requested outputs from the mempool when
constructing a mempool view
- Modify the spend journal to always store the block height and coinbase
information with every spent txout
- Introduce code to handle fetching the missing information from
another utxo from the same transaction in the event an old style
entry is encountered
- Make use of a database cursor with seek to do this much more
efficiently than testing every possible output
- Always decompress data loaded from the database now that a utxo entry
only consists of a specific output
- Introduce upgrade code to migrate the utxo set to the new format
- Store versions of the utxoset and spend journal buckets
- Allow migration process to be interrupted and resumed
- Update all tests to expect the correct encodings, remove tests that no
longer apply, and add new ones for the new expected behavior
- Convert old tests for the legacy utxo format deserialization code to
test the new function that is used during upgrade
- Update the utxostore test data and add function that was used to
convert it
- Introduce a few new functions on UtxoViewpoint
- AddTxOut for adding an individual txout versus all of them
- addTxOut to handle the common code between the new AddTxOut and
existing AddTxOuts
- RemoveEntry for removing an individual txout
- fetchEntryByHash for fetching any remaining utxo for a given
transaction hash
The cfilter BIP specifies that the filter type is a uint8. The
current code encodes it correctly on the wire, but everywhere else,
it's treated as a boolean (false for basic filter, true for
extended). This commit corrects that to account for possible
additional filter types in the future. All package changes are
done in one commit as they're all interdependent. The following
packages are updated:
* blockchain/indexers
* btcjson
* peer
* wire
* main (server.go and rpcserver.go)
Each node in the block index records some flags about its validation
state. This is just stored in memory for now, but can save effort if
attempting to reconnect a block that failed validation or was
disconnected.
This renames CheckConnectBlock to CheckConnectBlockTemplate and
modifies it to be easily consumable by the getblocktemplate RPC
handler. Performs full block validation now instead of partial
validation.
The modifies the encoding of witness stacks in JSON responses to use a
slice of strings instead of a single space-separated string for
compatibility with Core.
This refactors the code that locates blocks (inventory discovery) out of
server and into blockchain where it can make use of the new much more
efficient chain view and more easily be tested. As an aside, it really
belongs in blockchain anyways since it's purely dealing with the block
index and best chain.
Since the majority of the network has moved to header-based semantics,
this also provides an additional optimization to allow headers to be
located directly versus needing to first discover the hashes and then
fetch the headers.
The new functions are named LocateBlocks and LocateHeaders. The former
returns a slice of located hashes and the latter returns a slice of
located headers.
Finally, it also updates the RPC server getheaders call and related
plumbing to use the new LocateHeaders function.
A comprehensive suite of tests is provided to ensure both functions
behave correctly for both correct and incorrect block locators.
The purpose is to remove the dependency of blockmanager on serverPeer,
which is defined in the main package. Instead, we split out some of
the fields from serverPeer into a separate struct called peerSyncState
in blockmanager.go. While they are in the same package now, this
change makes it easier to move blockManager into its own package along
with peerSyncState. The blockManager tracks a map of Peer pointers to
the peer state and keeps it updated as peers connect and disconnect.
This refactors the RPC server to accept and take ownership of already
configured listeners and refactors the logic to setup those listeners to
the server. This mirrors the logic used by the connection manager and
is desirable since it is another step closer to being able to split the
RPC server code out into a separate package and will make it much easier
to internally test since it allows creating mock listeners.
This modifies all of the RPC code to use the chain parameters that are
associated with the RPC server instead of the global activeNetParams and
thus moves one step closer to being able to split the RPC server out
into a separate package.
This decouples the RPC server from the internal btcd server to move
closer to being able to split it out into a separate package.
In order to accomplish this, it introduces an rpcserverConfig type and
several new interfaces, named rpcserverPeer, rpcserverConnManager, and
rpcserverBlockManager, which are necessary to break the direct
dependencies on the main server and block manager instances.
It also adds concrete implementations of the new interfaces and uses
them to configure the RPC server.
Ultimately, the RPC server should ideally be decoupled even more such
that all of the types in the configuration struct use interfaces instead
of the concrete types. Doing this would make the RPC server much easier
to internally test since it would allow creating lightweight stubs for
the various pieces.
Instead of having the block manager notify the RPC server about
accepted, connected, and disconnected blocks, the RPC server will
directly listen for notifications from the blockchain.
This makes the code for getheaders more consistent with the rest of the
code in terms of making use of existing error functions and using the
same RPC error codes as other handlers.
While here, it also performs the fetching of headers directly instead of
using a function from server which makes it more tightly coupled.
This replaces the ErrDoubleSpend and ErrMissingTx error codes with a
single error code named ErrMissingTxOut and updates the relevant errors
and expected test results accordingly.
Once upon a time, the code relied on a transaction index, so it was able
to definitively differentiate between a transaction output that
legitimately did not exist and one that had already been spent.
However, since the code now uses a pruned utxoset, it is no longer
possible to reliably differentiate since once all outputs of a
transaction are spent, it is removed from the utxoset completely.
Consequently, a missing transaction could be either because the
transaction never existed or because it is fully spent.
This commit adds set of BIP0009 (Version Bits) deployment parameters
for all networks detailing the activation parameters for the segwit
soft-fork.
Additionally, the BIP0009 integration test has been updated to test for
the proper transitioning of version bits state for the segwit soft
fork. Finally, the `getblockchaininfo` test has also been updated to
properly display the state of segwit.
This commit implements the new “weight” metric introduced as part of
the segwit soft-fork. Post-fork activation, rather than limiting the
size of blocks and transactions based purely on serialized size, a new
metric “weight” will instead be used as a way to more accurately
reflect the costs of a tx/block on the system. With blocks constrained
by weight, the maximum block-size increases to ~4MB.
Version 0.15.0 of Bitcoin Core will include a new RPC command that will
allow us to obtain the amount of time (in seconds) that the server has
been running.
The btclog package has been changed to defining its own logging
interface (rather than seelog's) and provides a default implementation
for callers to use.
There are two primary advantages to the new logger implementation.
First, all log messages are created before the call returns. Compared
to seelog, this prevents data races when mutable variables are logged.
Second, the new logger does not implement any kind of artifical rate
limiting (what seelog refers to as "adaptive logging"). Log messages
are outputted as soon as possible and the application will appear to
perform much better when watching standard output.
Because log rotation is not a feature of the btclog logging
implementation, it is handled by the main package by importing a file
rotation package that provides an io.Reader interface for creating
output to a rotating file output. The rotator has been configured
with the same defaults that btcd previously used in the seelog config
(10MB file limits with maximum of 3 rolls) but now compresses newly
created roll files. Due to the high compressibility of log text, the
compressed files typically reduce to around 15-30% of the original
10MB file.
This modifies the blockNode and BestState structs in the blockchain
package to store hashes directly instead of pointers to them and updates
callers to deal with the API change in the exported BestState struct.
In general, the preferred approach for hashes moving forward is to store
hash values in complex data structures, particularly those that will be
used for cache entries, and accept pointers to hashes in arguments to
functions.
Some of the reasoning behind making this change is:
- It is generally preferred to avoid storing pointers to data in cache
objects since doing so can easily lead to storing interior pointers
into other structs that then can't be GC'd
- Keeping the hash values directly in the block node provides better
cache locality
This modifies the block node structure to include a couple of extra
fields needed to be able to reconstruct the block header from a node,
and exposes a new function from chain to fetch the block headers which
takes advantage of the new functionality to reconstruct the headers from
memory when possible. Finally, it updates both the p2p and RPC servers
to make use of the new function.
This is useful since many of the block header fields need to be kept in
order to form the block index anyways and storing the extra fields means
the database does not have to be consulted when headers are requested if
the associated node is still in memory.
The following timings show representative performance gains as measured
from one system:
new: Time to fetch 100000 headers: 59ms
old: Time to fetch 100000 headers: 4783ms