In this commit, we fix a bug in the way that we previously attempted to
server cfcheckpoints. In the prior version we would never actually
fetch the current length of the cache. As a result, after the first time
the checkpoints were fetched, we would always continually grow the
cache rather than using what's there if sufficient.
In this commit, we fix this behavior by always checking the length, then
either keeping the rite lock, or downgrading to a read lock if the size
was sufficient.
new txs that it observes. The block manager alerts the fee estimator
of new and orphaned blocks.
Check for invalid state and recreate FeeEstimator if necessary.
The cfilter BIP specifies that the filter type is a uint8. The
current code encodes it correctly on the wire, but everywhere else,
it's treated as a boolean (false for basic filter, true for
extended). This commit corrects that to account for possible
additional filter types in the future. All package changes are
done in one commit as they're all interdependent. The following
packages are updated:
* blockchain/indexers
* btcjson
* peer
* wire
* main (server.go and rpcserver.go)
This propagates the interrupt channel through to blockchain and the
indexers so that it is possible to interrupt long-running operations
such as catching up indexes.
The helper function parseListeners has been changed to return a
slice of net.Addrs with Network() returning tcp4 or tcp6 instead of
returning two slices of IPv4 and IPv6 addresses to simplify calling
code. Also improves how local addresses are added to the address
manager when listening on wildcard addresses.
Also splits some newServer logic into new method initListeners.
This refactors the code that locates blocks (inventory discovery) out of
server and into blockchain where it can make use of the new much more
efficient chain view and more easily be tested. As an aside, it really
belongs in blockchain anyways since it's purely dealing with the block
index and best chain.
Since the majority of the network has moved to header-based semantics,
this also provides an additional optimization to allow headers to be
located directly versus needing to first discover the hashes and then
fetch the headers.
The new functions are named LocateBlocks and LocateHeaders. The former
returns a slice of located hashes and the latter returns a slice of
located headers.
Finally, it also updates the RPC server getheaders call and related
plumbing to use the new LocateHeaders function.
A comprehensive suite of tests is provided to ensure both functions
behave correctly for both correct and incorrect block locators.