This simplifies the code based on the recommendations of the gosimple
lint tool.
Also, it increases the deadline for the linters to run to 10 minutes and
reduces the number of threads that is uses. This is being done because
the Travis environment has become increasingly slower and it also seems
to be hampered by too many threads running concurrently.
This modifies the blockNode and BestState structs in the blockchain
package to store hashes directly instead of pointers to them and updates
callers to deal with the API change in the exported BestState struct.
In general, the preferred approach for hashes moving forward is to store
hash values in complex data structures, particularly those that will be
used for cache entries, and accept pointers to hashes in arguments to
functions.
Some of the reasoning behind making this change is:
- It is generally preferred to avoid storing pointers to data in cache
objects since doing so can easily lead to storing interior pointers
into other structs that then can't be GC'd
- Keeping the hash values directly in the block node provides better
cache locality
This refactors the block index logic into a separate struct and
introduces an individual lock for it so it can be queried independent of
the chain lock.
This modifies the block nodes used in the blockchain package for keeping
track of the block index to use int64 for the timestamps instead of
time.Time.
This is being done because a time.Time takes 24 bytes while an int64
only takes 8 and the plan is to eventually move the entire block index
into memory instead of the current dynamically-loaded version, so
cutting the number of bytes used for the timestamp by a third is highly
desirable.
Also, the consensus code requires working with unix-style timestamps
anyways, so switching over to them in the block node does not seem
unreasonable.
Finally, this does not go so far as to change all of the time.Time
references, particularly those that are in the public API, so it is
purely an internal change.
This modifies the code to only enforce the fairly expensive BIP0030
(duplicate transcactions) checks when the chain has not yet reached the
BIP0034 activation height (and is not one of the 2 special historical
blocks that break the rule and prompted BIP0034 to being with) since
that BIP made it impossible to create duplicate coinbases and thus
removed the possibility of creating transactions that overwrite older
ones.
This is a rather large optimization because the check is expensive due
to involving a ton of cache misses in the utxoset. For example, the
following are times it took to perform the BIP0030 check on blocks
425490 - 425502 and a system with a relatively old Hitachi spinner HDD:
block 425490: 674.5857ms
block 425491: 726.5923ms
block 425492: 827.6051ms
block 425493: 680.0863ms
block 425494: 722.0917ms
block 425495: 700.0889ms
block 425496: 647.5823ms
block 425497: 445.0565ms
block 425498: 602.5765ms
block 425499: 375.0476ms
block 425500: 771.0979ms
block 425501: 461.5586ms
block 425502: 603.0766ms
As can be seen from these numbers, this reduces the block validation
time by an average of just over half a second for the given
representative data set and hardware.
Signed-off-by: Dave Collins <davec@conformal.com>
Now that all softforking is done via BIP0009 versionbits, replace the
old isMajorityVersion deployment mechanism with hard coded historical
block heights at which they became active.
Since the activation heights vary per network, this adds new parameters
to the chaincfg.Params struct for them and sets the correct heights at
which each softfork became active on each chain.
It should be noted that this is a technically hard fork since the
behavior of alternate chain history is different with these hard-coded
activation heights as opposed to the old isMajorityVersion code. In
particular, an alternate chain history could activate one of the soft
forks earlier than these hard-coded heights which means the old code
would reject blocks which violate the new soft fork rules whereas this
new code would not.
However, all of the soft forks this refers to were activated so far in
the chain history there is there is no way a reorg that long could
happen and checkpoints reject alternate chains before the most recent
checkpoint anyways. Furthermore, the same change was made in Bitcoin
Core so this needs to be changed to be consistent anyways.
This commit introduces the concept of “sequence locks” borrowed from
Bitcoin Core for converting an input’s relative time-locks to an
absolute value based on a particular block for input maturity
evaluation.
A sequence lock is computed as the most distant maturity height/time
amongst all the referenced outputs within a particular transaction.
A transaction with sequence locks activated within any of its inputs
can *only* be included within a block if from the point-of-view of that
block either the time-based or height-based maturity for all referenced
inputs has been met.
A transaction with sequence locks can only be accepted to the mempool
iff from the point-of-view of the *next* (yet to be found block) all
referenced inputs within the transaction are mature.
This modifies the ExtractCoinbaseHeight function to recognize small
canonically serialized block heights in coinbase scripts of blocks
higher than version 2.
This allows regression test chains in which blocks encode the serialized
height in the coinbase starting from block 1.
This moves several of the chain constants to the Params struct in the
chaincfg package which is intended for that purpose. This is mostly a
backport of the same modifications made in Decred along with a few
additional things cleaned up.
The following is an overview of the changes:
- Comment all fields in the Params struct definition
- Add locals to BlockChain instance for the calculated values based on
the provided chain params
- Rename the following param fields:
- SubsidyHalvingInterval -> SubsidyReductionInterval
- ResetMinDifficulty -> ReduceMinDifficulty
- Add new Param fields:
- CoinbaseMaturity
- TargetTimePerBlock
- TargetTimespan
- BlocksPerRetarget
- RetargetAdjustmentFactor
- MinDiffReductionTime
This is mostly a backport of some of the same modifications made in
Decred along with a few additional things cleaned up. In particular,
this updates the code to make use of the new chainhash package.
Also, since this required API changes anyways and the hash algorithm is
no longer tied specifically to SHA, all other functions throughout the
code base which had "Sha" in their name have been changed to Hash so
they are not incorrectly implying the hash algorithm.
The following is an overview of the changes:
- Remove the wire.ShaHash type
- Update all references to wire.ShaHash to the new chainhash.Hash type
- Rename the following functions and update all references:
- wire.BlockHeader.BlockSha -> BlockHash
- wire.MsgBlock.BlockSha -> BlockHash
- wire.MsgBlock.TxShas -> TxHashes
- wire.MsgTx.TxSha -> TxHash
- blockchain.ShaHashToBig -> HashToBig
- peer.ShaFunc -> peer.HashFunc
- Rename all variables that included sha in their name to include hash
instead
- Update for function name changes in other dependent packages such as
btcutil
- Update copyright dates on all modified files
- Update glide.lock file to use the required version of btcutil
This commit is the first stage of several that are planned to convert
the blockchain package into a concurrent safe package that will
ultimately allow support for multi-peer download and concurrent chain
processing. The goal is to update btcd proper after each step so it can
take advantage of the enhancements as they are developed.
In addition to the aforementioned benefit, this staged approach has been
chosen since it is absolutely critical to maintain consensus.
Separating the changes into several stages makes it easier for reviewers
to logically follow what is happening and therefore helps prevent
consensus bugs. Naturally there are significant automated tests to help
prevent consensus issues as well.
The main focus of this stage is to convert the blockchain package to use
the new database interface and implement the chain-related functionality
which it no longer handles. It also aims to improve efficiency in
various areas by making use of the new database and chain capabilities.
The following is an overview of the chain changes:
- Update to use the new database interface
- Add chain-related functionality that the old database used to handle
- Main chain structure and state
- Transaction spend tracking
- Implement a new pruned unspent transaction output (utxo) set
- Provides efficient direct access to the unspent transaction outputs
- Uses a domain specific compression algorithm that understands the
standard transaction scripts in order to significantly compress them
- Removes reliance on the transaction index and paves the way toward
eventually enabling block pruning
- Modify the New function to accept a Config struct instead of
inidividual parameters
- Replace the old TxStore type with a new UtxoViewpoint type that makes
use of the new pruned utxo set
- Convert code to treat the new UtxoViewpoint as a rolling view that is
used between connects and disconnects to improve efficiency
- Make best chain state always set when the chain instance is created
- Remove now unnecessary logic for dealing with unset best state
- Make all exported functions concurrent safe
- Currently using a single chain state lock as it provides a straight
forward and easy to review path forward however this can be improved
with more fine grained locking
- Optimize various cases where full blocks were being loaded when only
the header is needed to help reduce the I/O load
- Add the ability for callers to get a snapshot of the current best
chain stats in a concurrent safe fashion
- Does not block callers while new blocks are being processed
- Make error messages that reference transaction outputs consistently
use <transaction hash>:<output index>
- Introduce a new AssertError type an convert internal consistency
checks to use it
- Update tests and examples to reflect the changes
- Add a full suite of tests to ensure correct functionality of the new
code
The following is an overview of the btcd changes:
- Update to use the new database and chain interfaces
- Temporarily remove all code related to the transaction index
- Temporarily remove all code related to the address index
- Convert all code that uses transaction stores to use the new utxo
view
- Rework several calls that required the block manager for safe
concurrency to use the chain package directly now that it is
concurrent safe
- Change all calls to obtain the best hash to use the new best state
snapshot capability from the chain package
- Remove workaround for limits on fetching height ranges since the new
database interface no longer imposes them
- Correct the gettxout RPC handler to return the best chain hash as
opposed the hash the txout was found in
- Optimize various RPC handlers:
- Change several of the RPC handlers to use the new chain snapshot
capability to avoid needlessly loading data
- Update several handlers to use new functionality to avoid accessing
the block manager so they are able to return the data without
blocking when the server is busy processing blocks
- Update non-verbose getblock to avoid deserialization and
serialization overhead
- Update getblockheader to request the block height directly from
chain and only load the header
- Update getdifficulty to use the new cached data from chain
- Update getmininginfo to use the new cached data from chain
- Update non-verbose getrawtransaction to avoid deserialization and
serialization overhead
- Update gettxout to use the new utxo store versus loading
full transactions using the transaction index
The following is an overview of the utility changes:
- Update addblock to use the new database and chain interfaces
- Update findcheckpoint to use the new database and chain interfaces
- Remove the dropafter utility which is no longer supported
NOTE: The transaction index and address index will be reimplemented in
another commit.
Introduce an ECDSA signature verification into btcd in order to
mitigate a certain DoS attack and as a performance optimization.
The benefits of SigCache are two fold. Firstly, usage of SigCache
mitigates a DoS attack wherein an attacker causes a victim's client to
hang due to worst-case behavior triggered while processing attacker
crafted invalid transactions. A detailed description of the mitigated
DoS attack can be found here: https://bitslog.wordpress.com/2013/01/23/fixed-bitcoin-vulnerability-explanation-why-the-signature-cache-is-a-dos-protection/
Secondly, usage of the SigCache introduces a signature verification
optimization which speeds up the validation of transactions within a
block, if they've already been seen and verified within the mempool.
The server itself manages the sigCache instance. The blockManager and
txMempool respectively now receive pointers to the created sigCache
instance. All read (sig triplet existence) operations on the sigCache
will not block unless a separate goroutine is adding an entry (writing)
to the sigCache. GetBlockTemplate generation now also utilizes the
sigCache in order to avoid unnecessarily double checking signatures
when generating a template after previously accepting a txn to the
mempool. Consequently, the CPU miner now also employs the same
optimization.
The maximum number of entries for the sigCache has been introduced as a
config parameter in order to allow users to configure the amount of
memory consumed by this new additional caching.
This commit converts all block height references to int32 instead of
int64. The current target block production rate is 10 mins per block
which means it will take roughly 40,800 years to reach the maximum
height an int32 affords. Even if the target rate were lowered to one
block per minute, it would still take roughly another 4,080 years to
reach the maximum.
In the mean time, there is no reason to use a larger type which results
in higher memory and disk space usage. However, for now, in order to
avoid having to reserialize a bunch of database information, the heights
are still serialized to the database as 8-byte uint64s.
This is being mainly being done in preparation for further upcoming
infrastructure changes which will use the smaller and more efficient
4-byte serialization in the database as well.
This change moves IsFinalizedTransaction to txscript and also changes
the first argument to take a wire.MsgTx instead of btcutil.Tx. This
is needed for an upcoming diff in which txscript will require
IsFinalizedTransaction and we do not want to import the btcd/blockchain.
This commit refactors the consensus rule checks for block headers and
blocks in the blockchain package into separate functions. These changes
contain no modifications to consensus rules and the code still passes all
block consensus tests. It is only a refactoring.
This is being done to help pave the way toward supporting concurrent
downloads. While the package already supports headers-first mode up
through the latest checkpoint through the use of the BFFastAdd flag and
hard-coded checkpoints, it currently only works when downloading from a
single peer. In order to support concurrent downloads from multiple
peers, the ability for the caller to do things such as independently
checking a block header (both context-free and full-context checks) will
be needed.
There are several more changes that will be necessary to support
concurrent downloads as well, such as making the package concurrent safe,
modifying it to make use of the new database API, etc. Those changes are
planned for future commits.
In order to avoid prior situations of stalled syncs due to
outdated peer height data, we now update block heights up peers in
real-time as we learn of their announced
blocks.
Updates happen when:
* A peer sends us an orphan block. We update based on
the height embedded in the scriptSig for the coinbase tx
* When a peer sends us an inv for a block we already know
of
* When peers announce new blocks. Subsequent
announcements that lost the announcement race are
recognized and peer heights are updated accordingly
Additionally, the `getpeerinfo` command has been modified
to include both the starting height, and current height of
connected peers.
Docs have been updated with `getpeerinfo` extension.
This commit adds a new function to the blockchain package named
IsCoinBaseTx which performs the same function as IsCoinBase except it
takes raw wire transactions as opposed to the higher level util
transactions.
While here, it also adds a file for benchmarks along with a couple of
benchmarks for the IsCoinBase and IsCoinBaseTx functions.
Finally, the function was very slightly optimized:
BenchmarkIsCoinBaseOld 100000000 10.7 ns/op 0 B/op 0 allocs/op
BenchmarkIsCoinBaseNew 200000000 6.05 ns/op 0 B/op 0 allocs/op
This commit moves the definition of the flags which are needed to check
transaction scripts higher up the call stack to pave the way for adding
support for v3 blocks. While here, also spruce up a couple of sections.
There are no functional changes in this commit.
This commit contains the entire btcchain repository along with several
changes needed to move all of the files into the blockchain directory in
order to prepare it for merging. This does NOT update btcd or any of the
other packages to use the new location as that will be done separately.
- All import paths in the old btcchain test files have been changed to
the new location
- All references to btcchain as the package name have been changed to
blockchain