This propagates the interrupt channel through to blockchain and the
indexers so that it is possible to interrupt long-running operations
such as catching up indexes.
The helper function parseListeners has been changed to return a
slice of net.Addrs with Network() returning tcp4 or tcp6 instead of
returning two slices of IPv4 and IPv6 addresses to simplify calling
code. Also improves how local addresses are added to the address
manager when listening on wildcard addresses.
Also splits some newServer logic into new method initListeners.
This refactors the code that locates blocks (inventory discovery) out of
server and into blockchain where it can make use of the new much more
efficient chain view and more easily be tested. As an aside, it really
belongs in blockchain anyways since it's purely dealing with the block
index and best chain.
Since the majority of the network has moved to header-based semantics,
this also provides an additional optimization to allow headers to be
located directly versus needing to first discover the hashes and then
fetch the headers.
The new functions are named LocateBlocks and LocateHeaders. The former
returns a slice of located hashes and the latter returns a slice of
located headers.
Finally, it also updates the RPC server getheaders call and related
plumbing to use the new LocateHeaders function.
A comprehensive suite of tests is provided to ensure both functions
behave correctly for both correct and incorrect block locators.
The purpose is to remove the dependency of blockmanager on serverPeer,
which is defined in the main package. Instead, we split out some of
the fields from serverPeer into a separate struct called peerSyncState
in blockmanager.go. While they are in the same package now, this
change makes it easier to move blockManager into its own package along
with peerSyncState. The blockManager tracks a map of Peer pointers to
the peer state and keeps it updated as peers connect and disconnect.
Instead of having both server and blockManager be aware of the
txProcessed and blockProcessed channels, now the server passed them as
method arguments to blockProcessor.
This refactors the RPC server to accept and take ownership of already
configured listeners and refactors the logic to setup those listeners to
the server. This mirrors the logic used by the connection manager and
is desirable since it is another step closer to being able to split the
RPC server code out into a separate package and will make it much easier
to internally test since it allows creating mock listeners.
This decouples the RPC server from the internal btcd server to move
closer to being able to split it out into a separate package.
In order to accomplish this, it introduces an rpcserverConfig type and
several new interfaces, named rpcserverPeer, rpcserverConnManager, and
rpcserverBlockManager, which are necessary to break the direct
dependencies on the main server and block manager instances.
It also adds concrete implementations of the new interfaces and uses
them to configure the RPC server.
Ultimately, the RPC server should ideally be decoupled even more such
that all of the types in the configuration struct use interfaces instead
of the concrete types. Doing this would make the RPC server much easier
to internally test since it would allow creating lightweight stubs for
the various pieces.
Instead of having the block manager notify the RPC server about
accepted, connected, and disconnected blocks, the RPC server will
directly listen for notifications from the blockchain.
The objective is to remove the reference from blockManager to
server. Since the blockManager is responsible for keeping the mempool
in sync, it should have a direct reference to it.
This commit modifies the existing block selection logic to limit
preferentially by weight instead of serialized block size, and also to
adhere to the new sig-op cost limits which are weighted according to
the witness discount.
This commit modifies the logic within the block manager and service to
preferentially fetch transactions and blocks which include witness data
from fully upgraded peers.
Once the initial version handshake has completed, the server now tracks
which of the connected peers are witness enabled (they advertise
SFNodeWitness). From then on, if a peer is witness enabled, then btcd
will always request full witness data when fetching
transactions/blocks.
Version 0.15.0 of Bitcoin Core will include a new RPC command that will
allow us to obtain the amount of time (in seconds) that the server has
been running.
This modifies the blockNode and BestState structs in the blockchain
package to store hashes directly instead of pointers to them and updates
callers to deal with the API change in the exported BestState struct.
In general, the preferred approach for hashes moving forward is to store
hash values in complex data structures, particularly those that will be
used for cache entries, and accept pointers to hashes in arguments to
functions.
Some of the reasoning behind making this change is:
- It is generally preferred to avoid storing pointers to data in cache
objects since doing so can easily lead to storing interior pointers
into other structs that then can't be GC'd
- Keeping the hash values directly in the block node provides better
cache locality
This modifies the block node structure to include a couple of extra
fields needed to be able to reconstruct the block header from a node,
and exposes a new function from chain to fetch the block headers which
takes advantage of the new functionality to reconstruct the headers from
memory when possible. Finally, it updates both the p2p and RPC servers
to make use of the new function.
This is useful since many of the block header fields need to be kept in
order to form the block index anyways and storing the extra fields means
the database does not have to be consulted when headers are requested if
the associated node is still in memory.
The following timings show representative performance gains as measured
from one system:
new: Time to fetch 100000 headers: 59ms
old: Time to fetch 100000 headers: 4783ms
A DNS lookup was being attempted on onion addresses causing
connections to fail. This has been fixed by introducing type
onionAddr (which implements a net.Addr interface) and passing
it to btcdDial.
Also, the following onion related fixes have been made:
* getaddednodeinfo - updated to handle onion addrs.
* TorLookupIP - fixed err being shadowed.
* newServer - rename tcpAddr to netAddr
* addrStringToNetAddr - skip if host is already an IP addr.
* addrStringToNetAddr - err if tor is disabled
* getaddednodeinfo - check if host is already an IP addr.
addrmgr.GetAddress() had a parameter `class string` originally intended
to support looking up addresses according to some type of filter such as
IPv4, IPv6, and only those which support specific wire.ServiceFlags
(full nodes, nodes that support bloom filters, nodes that support
segwit, etc). But currently the parameter is unused and also has an
inappropriate type `string`.
If it would ever be used, it's easy to add back and should then get an
appropriate type such as something that allows bitflags to be set so
that the caller could request combinations such as peers that support
IPv6, are full nodes, and support bloom filters.
This corrects an issue introduced by commit
e8f63bc295 where a failure to lookup a
hostname could lead to a panic in certain circumstances. An error is
now returned in that case as expected.