This renames CheckConnectBlock to CheckConnectBlockTemplate and
modifies it to be easily consumable by the getblocktemplate RPC
handler. Performs full block validation now instead of partial
validation.
This reworks the block index code such that it loads all of the headers
in the main chain at startup and constructs the full block index
accordingly.
Since the full index from the current best tip all the way back to the
genesis block is now guaranteed to be in memory, this also removes all
code related to dynamically loading the nodes and updates some of the
logic to take advantage of the fact traversing the block index can
longer potentially fail. There are also more optimizations and
simplifications that can be made in the future as a result of this.
Due to removing all of the extra overhead of tracking the dynamic state,
and ensuring the block node structs are aligned to eliminate extra
padding, the end result of a fully populated block index now takes quite
a bit less memory than the previous dynamically loaded version.
The main downside is that it now takes a while to start whereas it was
nearly instant before, however, it is much better to provide more
efficient runtime operation since that is its ultimate purpose and the
benefits far outweigh this downside.
Some benefits are:
- Since every block node is in memory, the recent code which
reconstructs headers from block nodes means that all headers can
always be served from memory which is important since the majority of
the network has moved to header-based semantics
- Several of the error paths can be removed since they are no longer
necessary
- It is no longer expensive to calculate CSV sequence locks or median
times of blocks way in the past
- It will be possible to create much more efficient iteration and
simplified views of the overall index
- The entire threshold state database cache can be removed since it is
cheap to construct it from the full block index as needed
An overview of the logic changes are as follows:
- Move AncestorNode from blockIndex to blockNode and greatly simplify
since it no longer has to deal with the possibility of dynamically
loading nodes and related failures
- Rename RelativeNode to RelativeAncestor, move to blockNode, and
redefine in terms of AncestorNode
- Move CalcPastMedianTime from blockIndex to blockNode and remove no
longer necessary test for nil
- Change calcSequenceLock to use Ancestor instead of RelativeAncestor
since it reads more clearly
This commit updates the block template generation logic to only include
witness transactions once the soft-fork has activated and to also
include the OP_RETURN witness commitment (with additional block weight
accounting).
This commit modifies the existing block selection logic to limit
preferentially by weight instead of serialized block size, and also to
adhere to the new sig-op cost limits which are weighted according to
the witness discount.
The btclog package has been changed to defining its own logging
interface (rather than seelog's) and provides a default implementation
for callers to use.
There are two primary advantages to the new logger implementation.
First, all log messages are created before the call returns. Compared
to seelog, this prevents data races when mutable variables are logged.
Second, the new logger does not implement any kind of artifical rate
limiting (what seelog refers to as "adaptive logging"). Log messages
are outputted as soon as possible and the application will appear to
perform much better when watching standard output.
Because log rotation is not a feature of the btclog logging
implementation, it is handled by the main package by importing a file
rotation package that provides an io.Reader interface for creating
output to a rotating file output. The rotator has been configured
with the same defaults that btcd previously used in the seelog config
(10MB file limits with maximum of 3 rolls) but now compresses newly
created roll files. Due to the high compressibility of log text, the
compressed files typically reduce to around 15-30% of the original
10MB file.
The github markdown interpreter has been changed such that it no longer
allows spaces in between the brackets and parenthesis of links and now
requires a newline in between anchors and other formatting. This
updates all of the markdown files accordingly.
While here, it also corrects a couple of inconsistencies in some of the
README.md files.
This simplifies the code based on the recommendations of the gosimple
lint tool.
Also, it increases the deadline for the linters to run to 10 minutes and
reduces the number of threads that is uses. This is being done because
the Travis environment has become increasingly slower and it also seems
to be hampered by too many threads running concurrently.
This modifies the blockNode and BestState structs in the blockchain
package to store hashes directly instead of pointers to them and updates
callers to deal with the API change in the exported BestState struct.
In general, the preferred approach for hashes moving forward is to store
hash values in complex data structures, particularly those that will be
used for cache entries, and accept pointers to hashes in arguments to
functions.
Some of the reasoning behind making this change is:
- It is generally preferred to avoid storing pointers to data in cache
objects since doing so can easily lead to storing interior pointers
into other structs that then can't be GC'd
- Keeping the hash values directly in the block node provides better
cache locality
This commit adds all of the infrastructure needed to support BIP0009
soft forks.
The following is an overview of the changes:
- Add new configuration options to the chaincfg package which allows the
rule deployments to be defined per chain
- Implement code to calculate the threshold state as required by BIP0009
- Use threshold state caches that are stored to the database in order
to accelerate startup time
- Remove caches that are invalid due to definition changes in the
params including additions, deletions, and changes to existing
entries
- Detect and warn when a new unknown rule is about to activate or has
been activated in the block connection code
- Detect and warn when 50% of the last 100 blocks have unexpected
versions.
- Remove the latest block version from wire since it no longer applies
- Add a version parameter to the wire.NewBlockHeader function since the
default is no longer available
- Update the miner block template generation code to use the calculated
block version based on the currently defined rule deployments and
their threshold states as of the previous block
- Add tests for new error type
- Add tests for threshold state cache
This does the minimum work necessary to refactor the CPU miner code into
its own package. The idea is that separating this code into its own
package will improve its testability and ultimately be useful to other
parts of the codebase such as the various tests which currently
effectively have their own stripped-down versions of this code.
The API will certainly need some additional cleanup and changes to make
it more usable outside of the specific circumstances it was originally
designed to support (namely the generate RPC), however it is better to
do that in future commits in order to keep the changeset as small as
possible during this refactor.
Overview of the major changes:
- Create the new package
- Move cpuminer.go -> cpuminer/cpuminer.go
- Update mining logging to use the new cpuminer package logger
- Rename cpuminerConfig to Config (so it's now cpuminer.Config)
- Rename newCPUMiner to New (so it's now cpuminer.New)
- Update all references to the cpuminer to use the package
- Add a skeleton README.md
This modifies the NewMsgTx function to accept the transaction version as
a parameter and updates all callers.
The reason for this change is so the transaction version can be bumped
in wire without breaking existing tests and to provide the caller with
the flexibility to create the specific transaction version they desire.
This does the minimum work necessary to refactor the block template
generation code into the mining package. The idea is that separating
this code into the mining package will greatly improve its testability,
allow independent benchmarking and profiling, and open up some
interesting opportunities for future development related to mining.
There are some areas related to policy and other configuration that
could be further refactored, however it is better to do that in future
commits in order to keep the changeset as small as possible during this
refactor.
Overview of the major changes:
- Move mining.go -> mining/mining.go
- Move mining_test.go -> mining/mining_test.go
- Add logger to mining package
- Update the MINR subsystem to use the new mining package logger
- Export CoinbaseFlags from the mining package
- BlkTmplGenerator is now mining.BlkTmplGenerator
- Update all references to the mining code to use the package
This move the export for MinHighPriority from the mempool package to the
mining package. This should have been done when the priority
calculation code was moved to the mining package.
This moves the priority-related code from the mempool package to the
mining package and also exports a new constant named UnminedHeight which
takes the place of the old unexported mempoolHeight.
Even though the mempool makes use of the priority code to make decisions
about what it will accept, priority really has to do with mining since
it influences which transactions will end up into a block. This change
also has the side effect of being a step towards enabling separation of
the mining code into its own package which, as previously mentioned,
needs access to the priority calculation code as well.
Finally, the mempoolHeight variable was poorly named since what it
really represents is a transaction that has not been mined into a block
yet. Renaming the variable to more accurately reflect its purpose makes
it clear that it belongs in the mining package which also needs the
definition now as well since the priority calculation code relies on it.
This will also benefit an outstanding PR which needs access to the same
value.
This is mostly a backport of some of the same modifications made in
Decred along with a few additional things cleaned up. In particular,
this updates the code to make use of the new chainhash package.
Also, since this required API changes anyways and the hash algorithm is
no longer tied specifically to SHA, all other functions throughout the
code base which had "Sha" in their name have been changed to Hash so
they are not incorrectly implying the hash algorithm.
The following is an overview of the changes:
- Remove the wire.ShaHash type
- Update all references to wire.ShaHash to the new chainhash.Hash type
- Rename the following functions and update all references:
- wire.BlockHeader.BlockSha -> BlockHash
- wire.MsgBlock.BlockSha -> BlockHash
- wire.MsgBlock.TxShas -> TxHashes
- wire.MsgTx.TxSha -> TxHash
- blockchain.ShaHashToBig -> HashToBig
- peer.ShaFunc -> peer.HashFunc
- Rename all variables that included sha in their name to include hash
instead
- Update for function name changes in other dependent packages such as
btcutil
- Update copyright dates on all modified files
- Update glide.lock file to use the required version of btcutil
This creates a skeleton mining package that simply contains a few of the
definitions used by the mining and mempool code.
This is a step towards decoupling the mining code from the internals of
btcd and ultimately will house all of the code related to creating block
templates and CPU mining.
The main reason a skeleton package is being created before the full
blown package is ready is to avoid blocking mempool separation which
relies on these type definitions.