lbcd/mempool/estimatefee.go
Roy Lee 28a5e6fc65 [lbry] rename btcd to lbcd
Co-authored-by: Brannon King <countprimes@gmail.com>
2021-12-14 14:00:59 -08:00

749 lines
20 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mempool
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"math/rand"
"sort"
"strings"
"sync"
"github.com/lbryio/lbcd/chaincfg/chainhash"
"github.com/lbryio/lbcd/mining"
btcutil "github.com/lbryio/lbcutil"
)
// TODO incorporate Alex Morcos' modifications to Gavin's initial model
// https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-October/006824.html
const (
// estimateFeeDepth is the maximum number of blocks before a transaction
// is confirmed that we want to track.
estimateFeeDepth = 25
// estimateFeeBinSize is the number of txs stored in each bin.
estimateFeeBinSize = 100
// estimateFeeMaxReplacements is the max number of replacements that
// can be made by the txs found in a given block.
estimateFeeMaxReplacements = 10
// DefaultEstimateFeeMaxRollback is the default number of rollbacks
// allowed by the fee estimator for orphaned blocks.
DefaultEstimateFeeMaxRollback = 2
// DefaultEstimateFeeMinRegisteredBlocks is the default minimum
// number of blocks which must be observed by the fee estimator before
// it will provide fee estimations.
DefaultEstimateFeeMinRegisteredBlocks = 3
bytePerKb = 1000
btcPerSatoshi = 1e-8
)
var (
// EstimateFeeDatabaseKey is the key that we use to
// store the fee estimator in the database.
EstimateFeeDatabaseKey = []byte("estimatefee")
)
// SatoshiPerByte is number with units of satoshis per byte.
type SatoshiPerByte float64
// BtcPerKilobyte is number with units of bitcoins per kilobyte.
type BtcPerKilobyte float64
// ToBtcPerKb returns a float value that represents the given
// SatoshiPerByte converted to satoshis per kb.
func (rate SatoshiPerByte) ToBtcPerKb() BtcPerKilobyte {
// If our rate is the error value, return that.
if rate == SatoshiPerByte(-1.0) {
return -1.0
}
return BtcPerKilobyte(float64(rate) * bytePerKb * btcPerSatoshi)
}
// Fee returns the fee for a transaction of a given size for
// the given fee rate.
func (rate SatoshiPerByte) Fee(size uint32) btcutil.Amount {
// If our rate is the error value, return that.
if rate == SatoshiPerByte(-1) {
return btcutil.Amount(-1)
}
return btcutil.Amount(float64(rate) * float64(size))
}
// NewSatoshiPerByte creates a SatoshiPerByte from an Amount and a
// size in bytes.
func NewSatoshiPerByte(fee btcutil.Amount, size uint32) SatoshiPerByte {
return SatoshiPerByte(float64(fee) / float64(size))
}
// observedTransaction represents an observed transaction and some
// additional data required for the fee estimation algorithm.
type observedTransaction struct {
// A transaction hash.
hash chainhash.Hash
// The fee per byte of the transaction in satoshis.
feeRate SatoshiPerByte
// The block height when it was observed.
observed int32
// The height of the block in which it was mined.
// If the transaction has not yet been mined, it is zero.
mined int32
}
func (o *observedTransaction) Serialize(w io.Writer) {
binary.Write(w, binary.BigEndian, o.hash)
binary.Write(w, binary.BigEndian, o.feeRate)
binary.Write(w, binary.BigEndian, o.observed)
binary.Write(w, binary.BigEndian, o.mined)
}
func deserializeObservedTransaction(r io.Reader) (*observedTransaction, error) {
ot := observedTransaction{}
// The first 32 bytes should be a hash.
binary.Read(r, binary.BigEndian, &ot.hash)
// The next 8 are SatoshiPerByte
binary.Read(r, binary.BigEndian, &ot.feeRate)
// And next there are two uint32's.
binary.Read(r, binary.BigEndian, &ot.observed)
binary.Read(r, binary.BigEndian, &ot.mined)
return &ot, nil
}
// registeredBlock has the hash of a block and the list of transactions
// it mined which had been previously observed by the FeeEstimator. It
// is used if Rollback is called to reverse the effect of registering
// a block.
type registeredBlock struct {
hash chainhash.Hash
transactions []*observedTransaction
}
func (rb *registeredBlock) serialize(w io.Writer, txs map[*observedTransaction]uint32) {
binary.Write(w, binary.BigEndian, rb.hash)
binary.Write(w, binary.BigEndian, uint32(len(rb.transactions)))
for _, o := range rb.transactions {
binary.Write(w, binary.BigEndian, txs[o])
}
}
// FeeEstimator manages the data necessary to create
// fee estimations. It is safe for concurrent access.
type FeeEstimator struct {
maxRollback uint32
binSize int32
// The maximum number of replacements that can be made in a single
// bin per block. Default is estimateFeeMaxReplacements
maxReplacements int32
// The minimum number of blocks that can be registered with the fee
// estimator before it will provide answers.
minRegisteredBlocks uint32
// The last known height.
lastKnownHeight int32
// The number of blocks that have been registered.
numBlocksRegistered uint32
mtx sync.RWMutex
observed map[chainhash.Hash]*observedTransaction
bin [estimateFeeDepth][]*observedTransaction
// The cached estimates.
cached []SatoshiPerByte
// Transactions that have been removed from the bins. This allows us to
// revert in case of an orphaned block.
dropped []*registeredBlock
}
// NewFeeEstimator creates a FeeEstimator for which at most maxRollback blocks
// can be unregistered and which returns an error unless minRegisteredBlocks
// have been registered with it.
func NewFeeEstimator(maxRollback, minRegisteredBlocks uint32) *FeeEstimator {
return &FeeEstimator{
maxRollback: maxRollback,
minRegisteredBlocks: minRegisteredBlocks,
lastKnownHeight: mining.UnminedHeight,
binSize: estimateFeeBinSize,
maxReplacements: estimateFeeMaxReplacements,
observed: make(map[chainhash.Hash]*observedTransaction),
dropped: make([]*registeredBlock, 0, maxRollback),
}
}
// ObserveTransaction is called when a new transaction is observed in the mempool.
func (ef *FeeEstimator) ObserveTransaction(t *TxDesc) {
ef.mtx.Lock()
defer ef.mtx.Unlock()
// If we haven't seen a block yet we don't know when this one arrived,
// so we ignore it.
if ef.lastKnownHeight == mining.UnminedHeight {
return
}
hash := *t.Tx.Hash()
if _, ok := ef.observed[hash]; !ok {
size := uint32(GetTxVirtualSize(t.Tx))
ef.observed[hash] = &observedTransaction{
hash: hash,
feeRate: NewSatoshiPerByte(btcutil.Amount(t.Fee), size),
observed: t.Height,
mined: mining.UnminedHeight,
}
}
}
// RegisterBlock informs the fee estimator of a new block to take into account.
func (ef *FeeEstimator) RegisterBlock(block *btcutil.Block) error {
ef.mtx.Lock()
defer ef.mtx.Unlock()
// The previous sorted list is invalid, so delete it.
ef.cached = nil
height := block.Height()
if height != ef.lastKnownHeight+1 && ef.lastKnownHeight != mining.UnminedHeight {
return fmt.Errorf("intermediate block not recorded; current height is %d; new height is %d",
ef.lastKnownHeight, height)
}
// Update the last known height.
ef.lastKnownHeight = height
ef.numBlocksRegistered++
// Randomly order txs in block.
transactions := make(map[*btcutil.Tx]struct{})
for _, t := range block.Transactions() {
transactions[t] = struct{}{}
}
// Count the number of replacements we make per bin so that we don't
// replace too many.
var replacementCounts [estimateFeeDepth]int
// Keep track of which txs were dropped in case of an orphan block.
dropped := &registeredBlock{
hash: *block.Hash(),
transactions: make([]*observedTransaction, 0, 100),
}
// Go through the txs in the block.
for t := range transactions {
hash := *t.Hash()
// Have we observed this tx in the mempool?
o, ok := ef.observed[hash]
if !ok {
continue
}
// Put the observed tx in the oppropriate bin.
blocksToConfirm := height - o.observed - 1
// This shouldn't happen if the fee estimator works correctly,
// but return an error if it does.
if o.mined != mining.UnminedHeight {
log.Error("Estimate fee: transaction ", hash.String(), " has already been mined")
return errors.New("Transaction has already been mined")
}
// This shouldn't happen but check just in case to avoid
// an out-of-bounds array index later.
if blocksToConfirm >= estimateFeeDepth {
continue
}
// Make sure we do not replace too many transactions per min.
if replacementCounts[blocksToConfirm] == int(ef.maxReplacements) {
continue
}
o.mined = height
replacementCounts[blocksToConfirm]++
bin := ef.bin[blocksToConfirm]
// Remove a random element and replace it with this new tx.
if len(bin) == int(ef.binSize) {
// Don't drop transactions we have just added from this same block.
l := int(ef.binSize) - replacementCounts[blocksToConfirm]
drop := rand.Intn(l)
dropped.transactions = append(dropped.transactions, bin[drop])
bin[drop] = bin[l-1]
bin[l-1] = o
} else {
bin = append(bin, o)
}
ef.bin[blocksToConfirm] = bin
}
// Go through the mempool for txs that have been in too long.
for hash, o := range ef.observed {
if o.mined == mining.UnminedHeight && height-o.observed >= estimateFeeDepth {
delete(ef.observed, hash)
}
}
// Add dropped list to history.
if ef.maxRollback == 0 {
return nil
}
if uint32(len(ef.dropped)) == ef.maxRollback {
ef.dropped = append(ef.dropped[1:], dropped)
} else {
ef.dropped = append(ef.dropped, dropped)
}
return nil
}
// LastKnownHeight returns the height of the last block which was registered.
func (ef *FeeEstimator) LastKnownHeight() int32 {
ef.mtx.Lock()
defer ef.mtx.Unlock()
return ef.lastKnownHeight
}
// Rollback unregisters a recently registered block from the FeeEstimator.
// This can be used to reverse the effect of an orphaned block on the fee
// estimator. The maximum number of rollbacks allowed is given by
// maxRollbacks.
//
// Note: not everything can be rolled back because some transactions are
// deleted if they have been observed too long ago. That means the result
// of Rollback won't always be exactly the same as if the last block had not
// happened, but it should be close enough.
func (ef *FeeEstimator) Rollback(hash *chainhash.Hash) error {
ef.mtx.Lock()
defer ef.mtx.Unlock()
// Find this block in the stack of recent registered blocks.
var n int
for n = 1; n <= len(ef.dropped); n++ {
if ef.dropped[len(ef.dropped)-n].hash.IsEqual(hash) {
break
}
}
if n > len(ef.dropped) {
return errors.New("no such block was recently registered")
}
for i := 0; i < n; i++ {
ef.rollback()
}
return nil
}
// rollback rolls back the effect of the last block in the stack
// of registered blocks.
func (ef *FeeEstimator) rollback() {
// The previous sorted list is invalid, so delete it.
ef.cached = nil
// pop the last list of dropped txs from the stack.
last := len(ef.dropped) - 1
if last == -1 {
// Cannot really happen because the exported calling function
// only rolls back a block already known to be in the list
// of dropped transactions.
return
}
dropped := ef.dropped[last]
// where we are in each bin as we replace txs?
var replacementCounters [estimateFeeDepth]int
// Go through the txs in the dropped block.
for _, o := range dropped.transactions {
// Which bin was this tx in?
blocksToConfirm := o.mined - o.observed - 1
bin := ef.bin[blocksToConfirm]
var counter = replacementCounters[blocksToConfirm]
// Continue to go through that bin where we left off.
for {
if counter >= len(bin) {
// Panic, as we have entered an unrecoverable invalid state.
panic(errors.New("illegal state: cannot rollback dropped transaction"))
}
prev := bin[counter]
if prev.mined == ef.lastKnownHeight {
prev.mined = mining.UnminedHeight
bin[counter] = o
counter++
break
}
counter++
}
replacementCounters[blocksToConfirm] = counter
}
// Continue going through bins to find other txs to remove
// which did not replace any other when they were entered.
for i, j := range replacementCounters {
for {
l := len(ef.bin[i])
if j >= l {
break
}
prev := ef.bin[i][j]
if prev.mined == ef.lastKnownHeight {
prev.mined = mining.UnminedHeight
newBin := append(ef.bin[i][0:j], ef.bin[i][j+1:l]...)
// TODO This line should prevent an unintentional memory
// leak but it causes a panic when it is uncommented.
// ef.bin[i][j] = nil
ef.bin[i] = newBin
continue
}
j++
}
}
ef.dropped = ef.dropped[0:last]
// The number of blocks the fee estimator has seen is decrimented.
ef.numBlocksRegistered--
ef.lastKnownHeight--
}
// estimateFeeSet is a set of txs that can that is sorted
// by the fee per kb rate.
type estimateFeeSet struct {
feeRate []SatoshiPerByte
bin [estimateFeeDepth]uint32
}
func (b *estimateFeeSet) Len() int { return len(b.feeRate) }
func (b *estimateFeeSet) Less(i, j int) bool {
return b.feeRate[i] > b.feeRate[j]
}
func (b *estimateFeeSet) Swap(i, j int) {
b.feeRate[i], b.feeRate[j] = b.feeRate[j], b.feeRate[i]
}
// estimateFee returns the estimated fee for a transaction
// to confirm in confirmations blocks from now, given
// the data set we have collected.
func (b *estimateFeeSet) estimateFee(confirmations int) SatoshiPerByte {
if confirmations <= 0 {
return SatoshiPerByte(math.Inf(1))
}
if confirmations > estimateFeeDepth {
return 0
}
// We don't have any transactions!
if len(b.feeRate) == 0 {
return 0
}
var min, max int = 0, 0
for i := 0; i < confirmations-1; i++ {
min += int(b.bin[i])
}
max = min + int(b.bin[confirmations-1]) - 1
if max < min {
max = min
}
feeIndex := (min + max) / 2
if feeIndex >= len(b.feeRate) {
feeIndex = len(b.feeRate) - 1
}
return b.feeRate[feeIndex]
}
// newEstimateFeeSet creates a temporary data structure that
// can be used to find all fee estimates.
func (ef *FeeEstimator) newEstimateFeeSet() *estimateFeeSet {
set := &estimateFeeSet{}
capacity := 0
for i, b := range ef.bin {
l := len(b)
set.bin[i] = uint32(l)
capacity += l
}
set.feeRate = make([]SatoshiPerByte, capacity)
i := 0
for _, b := range ef.bin {
for _, o := range b {
set.feeRate[i] = o.feeRate
i++
}
}
sort.Sort(set)
return set
}
// estimates returns the set of all fee estimates from 1 to estimateFeeDepth
// confirmations from now.
func (ef *FeeEstimator) estimates() []SatoshiPerByte {
set := ef.newEstimateFeeSet()
estimates := make([]SatoshiPerByte, estimateFeeDepth)
for i := 0; i < estimateFeeDepth; i++ {
estimates[i] = set.estimateFee(i + 1)
}
return estimates
}
// EstimateFee estimates the fee per byte to have a tx confirmed a given
// number of blocks from now.
func (ef *FeeEstimator) EstimateFee(numBlocks uint32) (BtcPerKilobyte, error) {
ef.mtx.Lock()
defer ef.mtx.Unlock()
// If the number of registered blocks is below the minimum, return
// an error.
if ef.numBlocksRegistered < ef.minRegisteredBlocks {
return -1, errors.New("not enough blocks have been observed")
}
if numBlocks == 0 {
return -1, errors.New("cannot confirm transaction in zero blocks")
}
if numBlocks > estimateFeeDepth {
return -1, fmt.Errorf(
"can only estimate fees for up to %d blocks from now",
estimateFeeDepth)
}
// If there are no cached results, generate them.
if ef.cached == nil {
ef.cached = ef.estimates()
}
return ef.cached[int(numBlocks)-1].ToBtcPerKb(), nil
}
// In case the format for the serialized version of the FeeEstimator changes,
// we use a version number. If the version number changes, it does not make
// sense to try to upgrade a previous version to a new version. Instead, just
// start fee estimation over.
const estimateFeeSaveVersion = 1
func deserializeRegisteredBlock(r io.Reader, txs map[uint32]*observedTransaction) (*registeredBlock, error) {
var lenTransactions uint32
rb := &registeredBlock{}
binary.Read(r, binary.BigEndian, &rb.hash)
binary.Read(r, binary.BigEndian, &lenTransactions)
rb.transactions = make([]*observedTransaction, lenTransactions)
for i := uint32(0); i < lenTransactions; i++ {
var index uint32
binary.Read(r, binary.BigEndian, &index)
rb.transactions[i] = txs[index]
}
return rb, nil
}
// FeeEstimatorState represents a saved FeeEstimator that can be
// restored with data from an earlier session of the program.
type FeeEstimatorState []byte
// observedTxSet is a set of txs that can that is sorted
// by hash. It exists for serialization purposes so that
// a serialized state always comes out the same.
type observedTxSet []*observedTransaction
func (q observedTxSet) Len() int { return len(q) }
func (q observedTxSet) Less(i, j int) bool {
return strings.Compare(q[i].hash.String(), q[j].hash.String()) < 0
}
func (q observedTxSet) Swap(i, j int) {
q[i], q[j] = q[j], q[i]
}
// Save records the current state of the FeeEstimator to a []byte that
// can be restored later.
func (ef *FeeEstimator) Save() FeeEstimatorState {
ef.mtx.Lock()
defer ef.mtx.Unlock()
// TODO figure out what the capacity should be.
w := bytes.NewBuffer(make([]byte, 0))
binary.Write(w, binary.BigEndian, uint32(estimateFeeSaveVersion))
// Insert basic parameters.
binary.Write(w, binary.BigEndian, &ef.maxRollback)
binary.Write(w, binary.BigEndian, &ef.binSize)
binary.Write(w, binary.BigEndian, &ef.maxReplacements)
binary.Write(w, binary.BigEndian, &ef.minRegisteredBlocks)
binary.Write(w, binary.BigEndian, &ef.lastKnownHeight)
binary.Write(w, binary.BigEndian, &ef.numBlocksRegistered)
// Put all the observed transactions in a sorted list.
var txCount uint32
ots := make([]*observedTransaction, len(ef.observed))
for hash := range ef.observed {
ots[txCount] = ef.observed[hash]
txCount++
}
sort.Sort(observedTxSet(ots))
txCount = 0
observed := make(map[*observedTransaction]uint32)
binary.Write(w, binary.BigEndian, uint32(len(ef.observed)))
for _, ot := range ots {
ot.Serialize(w)
observed[ot] = txCount
txCount++
}
// Save all the right bins.
for _, list := range ef.bin {
binary.Write(w, binary.BigEndian, uint32(len(list)))
for _, o := range list {
binary.Write(w, binary.BigEndian, observed[o])
}
}
// Dropped transactions.
binary.Write(w, binary.BigEndian, uint32(len(ef.dropped)))
for _, registered := range ef.dropped {
registered.serialize(w, observed)
}
// Commit the tx and return.
return FeeEstimatorState(w.Bytes())
}
// RestoreFeeEstimator takes a FeeEstimatorState that was previously
// returned by Save and restores it to a FeeEstimator
func RestoreFeeEstimator(data FeeEstimatorState) (*FeeEstimator, error) {
r := bytes.NewReader([]byte(data))
// Check version
var version uint32
err := binary.Read(r, binary.BigEndian, &version)
if err != nil {
return nil, err
}
if version != estimateFeeSaveVersion {
return nil, fmt.Errorf("Incorrect version: expected %d found %d", estimateFeeSaveVersion, version)
}
ef := &FeeEstimator{
observed: make(map[chainhash.Hash]*observedTransaction),
}
// Read basic parameters.
binary.Read(r, binary.BigEndian, &ef.maxRollback)
binary.Read(r, binary.BigEndian, &ef.binSize)
binary.Read(r, binary.BigEndian, &ef.maxReplacements)
binary.Read(r, binary.BigEndian, &ef.minRegisteredBlocks)
binary.Read(r, binary.BigEndian, &ef.lastKnownHeight)
binary.Read(r, binary.BigEndian, &ef.numBlocksRegistered)
// Read transactions.
var numObserved uint32
observed := make(map[uint32]*observedTransaction)
binary.Read(r, binary.BigEndian, &numObserved)
for i := uint32(0); i < numObserved; i++ {
ot, err := deserializeObservedTransaction(r)
if err != nil {
return nil, err
}
observed[i] = ot
ef.observed[ot.hash] = ot
}
// Read bins.
for i := 0; i < estimateFeeDepth; i++ {
var numTransactions uint32
binary.Read(r, binary.BigEndian, &numTransactions)
bin := make([]*observedTransaction, numTransactions)
for j := uint32(0); j < numTransactions; j++ {
var index uint32
binary.Read(r, binary.BigEndian, &index)
var exists bool
bin[j], exists = observed[index]
if !exists {
return nil, fmt.Errorf("Invalid transaction reference %d", index)
}
}
ef.bin[i] = bin
}
// Read dropped transactions.
var numDropped uint32
binary.Read(r, binary.BigEndian, &numDropped)
ef.dropped = make([]*registeredBlock, numDropped)
for i := uint32(0); i < numDropped; i++ {
var err error
ef.dropped[int(i)], err = deserializeRegisteredBlock(r, observed)
if err != nil {
return nil, err
}
}
return ef, nil
}