lbcd/addrmanager.go
Owain G. Ainsworth 850420055f Bucketizing for addrmanager
Implement the bucketing by source group and group using essentially the
same algorithm as the address maanger in bitcoind.

Fix up the saving of peer.json to do so in a json format that keeps bucket
metadata.

If we fail to load the some of the data we asssume that we have
incomplete information, so we nuke the existing file and reinitialise so
we have a clean slate.
2013-10-02 14:35:59 +01:00

1153 lines
30 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"container/list"
crand "crypto/rand" // for seeding
"encoding/binary"
"encoding/json"
"fmt"
"github.com/conformal/btcwire"
"io"
"math"
"math/rand"
"net"
"os"
"path/filepath"
"strconv"
"sync"
"time"
)
const (
// maxAddresses identifies the maximum number of addresses that the
// address manager will track.
maxAddresses = 2500
// needAddressThreshold is the number of addresses under which the
// address manager will claim to need more addresses.
needAddressThreshold = 1000
newAddressBufferSize = 50
// dumpAddressInterval is the interval used to dump the address
// cache to disk for future use.
dumpAddressInterval = time.Minute * 2
// triedBucketSize is the maximum number of addresses in each
// tried address bucket.
triedBucketSize = 64
// triedBucketCount is the number of buckets we split tried
// addresses over.
triedBucketCount = 64
// newBucketSize is the maximum number of addresses in each new address
// bucket.
newBucketSize = 64
// newBucketCount is the number of buckets taht we spread new addresses
// over.
newBucketCount = 256
// triedBucketsPerGroup is the number of trieed buckets over which an
// address group will be spread.
triedBucketsPerGroup = 4
// newBucketsPerGroup is the number of new buckets over which an
// source address group will be spread.
newBucketsPerGroup = 32
// newBucketsPerAddress is the number of buckets a frequently seen new
// address may end up in.
newBucketsPerAddress = 4
// numMissingDays is the number of days before which we assume an
// address has vanished if we have not seen it announced in that long.
numMissingDays = 30
// numRetries is the number of tried without a single success before
// we assume an address is bad.
numRetries = 3
// maxFailures is the maximum number of failures we will accept without
// a success before considering an address bad.
maxFailures = 10
// minBadDays is the number of days since the last success before we
// will consider evicting an address.
minBadDays = 7
// getAddrMax is the most addresses that we will send in response
// to a getAddr (in practise the most addresses we will return from a
// call to AddressCache()).
getAddrMax = 2500
// getAddrPercent is the percentage of total addresses known that we
// will share with a call to AddressCache.
getAddrPercent = 23
// serialisationVersion is the current version of the on-disk format.
serialisationVersion = 1
)
// updateAddress is a helper function to either update an address already known
// to the address manager, or to add the address if not already known.
func (a *AddrManager) updateAddress(netAddr, srcAddr *btcwire.NetAddress) {
// Filter out non-routable addresses. Note that non-routable
// also includes invalid and local addresses.
if !Routable(netAddr) {
return
}
// Protect concurrent access.
a.mtx.Lock()
defer a.mtx.Unlock()
addr := NetAddressKey(netAddr)
ka := a.find(netAddr)
if ka != nil {
// TODO(oga) only update adresses periodically.
// Update the last seen time.
if netAddr.Timestamp.After(ka.na.Timestamp) {
ka.na.Timestamp = netAddr.Timestamp
}
// Update services.
ka.na.AddService(netAddr.Services)
// If already in tried, we have nothing to do here.
if ka.tried {
return
}
// Already at our max?
if ka.refs == newBucketsPerAddress {
return
}
// The more entries we have, the less likely we are to add more.
// likelyhood is 2N.
factor := int32(2 * ka.refs)
if a.rand.Int31n(factor) != 0 {
return
}
} else {
ka = &knownAddress{na: netAddr, srcAddr: srcAddr}
a.addrIndex[addr] = ka
a.nNew++
// XXX time penalty?
}
bucket := a.getNewBucket(netAddr, srcAddr)
// Already exists?
if _, ok := a.addrNew[bucket][addr]; ok {
return
}
// Enforce max addresses.
if len(a.addrNew[bucket]) > newBucketSize {
log.Tracef("[AMGR] new bucket is full, expiring old ")
a.expireNew(bucket)
}
// Add to new bucket.
ka.refs++
a.addrNew[bucket][addr] = ka
log.Tracef("[AMGR] Added new address %s for a total of %d addresses",
addr, a.nTried+a.nNew)
}
// bad returns true if the address in question has not been tried in the last
// minute and meets one of the following criteria:
// 1) It claims to be from the future
// 2) It hasn't been seen in over a month
// 3) It has failed at least three times and never succeeded
// 4) It has failed ten times in the last week
// All addresses that meet these criteria are assumed to be worthless and not
// worth keeping hold of.
func bad(ka *knownAddress) bool {
if ka.lastattempt.After(time.Now().Add(-1 * time.Minute)) {
return false
}
// From the future?
if ka.na.Timestamp.After(time.Now().Add(10 * time.Minute)) {
return true
}
// Over a month old?
if ka.na.Timestamp.After(time.Now().Add(-1 * numMissingDays * time.Hour * 24)) {
return true
}
// Never succeeded?
if ka.lastsuccess.IsZero() && ka.attempts >= numRetries {
return true
}
// Hasn't succeeded in too long?
if !ka.lastsuccess.After(time.Now().Add(-1*minBadDays*time.Hour*24)) &&
ka.attempts >= maxFailures {
return true
}
return false
}
// chance returns the selection probability for a known address. The priority
// depends upon how recent the address has been seen, how recent it was last
// attempted and how often attempts to connect to it have failed.
func chance(ka *knownAddress) float64 {
c := 1.0
now := time.Now()
var lastSeen float64
var lastTry float64
if !ka.na.Timestamp.After(now) {
var dur time.Duration
if ka.na.Timestamp.IsZero() {
// use unix epoch to match bitcoind.
dur = now.Sub(time.Unix(0, 0))
} else {
dur = now.Sub(ka.na.Timestamp)
}
lastSeen = dur.Seconds()
}
if !ka.lastattempt.After(now) {
var dur time.Duration
if ka.lastattempt.IsZero() {
// use unix epoch to match bitcoind.
dur = now.Sub(time.Unix(0, 0))
} else {
dur = now.Sub(ka.lastattempt)
}
lastTry = dur.Seconds()
}
c = 600.0 / (600.0 + lastSeen)
// Very recent attempts are less likely to be retried.
if lastTry > 60.0*10.0 {
c *= 0.01
}
// Failed attempts deprioritise.
if ka.attempts > 0 {
c /= float64(ka.attempts) * 1.5
}
return c
}
// expireNew makes space in the new buckets by expiring the really bad entries.
// If no bad entries are available we look at a few and remove the oldest.
func (a *AddrManager) expireNew(bucket int) {
// First see if there are any entries that are so bad we can just throw
// them away. otherwise we throw away the oldest entry in the cache.
// Bitcoind here chooses four random and just throws the oldest of
// those away, but we keep track of oldest in the initial traversal and
// use that information instead.
var oldest *knownAddress
for k, v := range a.addrNew[bucket] {
if bad(v) {
log.Tracef("[AMGR] expiring bad address %v", k)
delete(a.addrNew[bucket], k)
a.nNew--
v.refs--
if v.refs == 0 {
delete(a.addrIndex, k)
}
return
}
if oldest == nil {
oldest = v
} else if !v.na.Timestamp.After(oldest.na.Timestamp) {
oldest = v
}
}
if oldest != nil {
key := NetAddressKey(oldest.na)
log.Tracef("[AMGR] expiring oldest address %v", key)
delete(a.addrNew[bucket], key)
a.nNew--
oldest.refs--
if oldest.refs == 0 {
delete(a.addrIndex, key)
}
}
}
// pickTried selects an address from the tried bucket to be evicted.
// We just choose the eldest. Bitcoind selects 4 random entries and throws away
// the older of them.
func (a *AddrManager) pickTried(bucket int) *list.Element {
var oldest *knownAddress
var oldestElem *list.Element
for e := a.addrTried[bucket].Front(); e != nil; e = e.Next() {
ka := e.Value.(*knownAddress)
if oldest == nil || oldest.na.Timestamp.After(ka.na.Timestamp) {
oldestElem = e
oldest = ka
}
}
return oldestElem
}
// knownAddress tracks information about a known network address that is used
// to determine how viable an address is.
type knownAddress struct {
na *btcwire.NetAddress
srcAddr *btcwire.NetAddress
attempts int
lastattempt time.Time
lastsuccess time.Time
tried bool
refs int // reference count of new buckets
}
// AddrManager provides a concurrency safe address manager for caching potential
// peers on the bitcoin network.
type AddrManager struct {
mtx sync.Mutex
rand *rand.Rand
key [32]byte
addrIndex map[string]*knownAddress // address key to ka for all addrs.
addrNew [newBucketCount]map[string]*knownAddress
addrTried [triedBucketCount]*list.List
started bool
shutdown bool
wg sync.WaitGroup
quit chan bool
nTried int
nNew int
}
func (a *AddrManager) getNewBucket(netAddr, srcAddr *btcwire.NetAddress) int {
// bitcoind:
// doublesha256(key + sourcegroup + int64(doublesha256(key + group + sourcegroup))%bucket_per_source_group) % num_new_buckes
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(GroupKey(netAddr))...)
data1 = append(data1, []byte(GroupKey(srcAddr))...)
hash1 := btcwire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= newBucketsPerGroup
hashbuf := new(bytes.Buffer)
binary.Write(hashbuf, binary.LittleEndian, hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(srcAddr)...)
data2 = append(data2, hashbuf.Bytes()...)
hash2 := btcwire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % newBucketCount)
}
func (a *AddrManager) getTriedBucket(netAddr *btcwire.NetAddress) int {
// bitcoind hashes this as:
// doublesha256(key + group + truncate_to_64bits(doublesha256(key)) % buckets_per_group) % num_buckets
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(NetAddressKey(netAddr))...)
hash1 := btcwire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= triedBucketsPerGroup
hashbuf := new(bytes.Buffer)
binary.Write(hashbuf, binary.LittleEndian, hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(netAddr)...)
data2 = append(data2, hashbuf.Bytes()...)
hash2 := btcwire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % triedBucketCount)
}
// addressHandler is the main handler for the address manager. It must be run
// as a goroutine.
func (a *AddrManager) addressHandler() {
dumpAddressTicker := time.NewTicker(dumpAddressInterval)
out:
for !a.shutdown {
select {
case <-dumpAddressTicker.C:
if !a.shutdown {
a.savePeers()
}
case <-a.quit:
a.savePeers()
break out
}
}
dumpAddressTicker.Stop()
a.wg.Done()
log.Trace("[AMGR] Address handler done")
}
type serialisedKnownAddress struct {
Addr string
Src string
Attempts int
TimeStamp int64
LastAttempt int64
LastSuccess int64
// no refcount or tried, that is available from context.
}
type serialisedAddrManager struct {
Version int
Key [32]byte
Addresses []*serialisedKnownAddress
NewBuckets [newBucketCount][]string // string is NetAddressKey
TriedBuckets [triedBucketCount][]string
}
// savePeers saves all the known addresses to a file so they can be read back
// in at next run.
func (a *AddrManager) savePeers() {
// First we make a serialisable datastructure so we can encode it to
// json.
sam := new(serialisedAddrManager)
sam.Version = serialisationVersion
copy(sam.Key[:], a.key[:])
sam.Addresses = make([]*serialisedKnownAddress, len(a.addrIndex))
i := 0
for k, v := range a.addrIndex {
ska := new(serialisedKnownAddress)
ska.Addr = k
ska.TimeStamp = v.na.Timestamp.Unix()
ska.Src = NetAddressKey(v.srcAddr)
ska.Attempts = v.attempts
ska.LastAttempt = v.lastattempt.Unix()
ska.LastSuccess = v.lastsuccess.Unix()
// Tried and refs are implicit in the rest of the structure
// and will be worked out from context on unserialisation.
sam.Addresses[i] = ska
i++
}
for i := range a.addrNew {
sam.NewBuckets[i] = make([]string, len(a.addrNew[i]))
j := 0
for k := range a.addrNew[i] {
sam.NewBuckets[i][j] = k
j++
}
}
for i := range a.addrTried {
sam.TriedBuckets[i] = make([]string, a.addrTried[i].Len())
j := 0
for e := a.addrTried[i].Front(); e != nil; e = e.Next() {
ka := e.Value.(*knownAddress)
sam.TriedBuckets[i][j] = NetAddressKey(ka.na)
j++
}
}
// May give some way to specify this later.
filename := "peers.json"
filePath := filepath.Join(cfg.DataDir, filename)
w, err := os.Create(filePath)
if err != nil {
log.Error("Error opening file: ", filePath, err)
}
enc := json.NewEncoder(w)
defer w.Close()
enc.Encode(&sam)
}
// loadPeers loads the known address from the saved file. If empty, missing, or
// malformed file, just don't load anything and start fresh
func (a *AddrManager) loadPeers() {
// May give some way to specify this later.
filename := "peers.json"
filePath := filepath.Join(cfg.DataDir, filename)
err := a.deserialisePeers(filePath)
if err != nil {
log.Errorf("[AMGR] Failed to parse %s: %v", filePath,
err)
// if it is invalid we nuke the old one unconditionally.
err = os.Remove(filePath)
if err != nil {
log.Warn("Failed to remove corrupt peers "+
"file: ", err)
}
a.reset()
return
}
log.Infof("[AMGR] Successfuly loaded %d addresses from %s",
a.NumAddresses(), filePath)
}
func (a *AddrManager) deserialisePeers(filePath string) error {
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fmt.Errorf("%s does not exist.\n", filePath)
}
r, err := os.Open(filePath)
if err != nil {
return fmt.Errorf("%s error opening file: ", filePath, err)
}
defer r.Close()
var sam serialisedAddrManager
dec := json.NewDecoder(r)
err = dec.Decode(&sam)
if err != nil {
return fmt.Errorf("error reading %s: %v", filePath, err)
}
if sam.Version != serialisationVersion {
return fmt.Errorf("unknown version %v in serialised "+
"addrmanager", sam.Version)
}
copy(a.key[:], sam.Key[:])
for _, v := range sam.Addresses {
ka := new(knownAddress)
ka.na, err = deserialiseNetAddress(v.Addr)
if err != nil {
return fmt.Errorf("failed to deserialise netaddress "+
"%s: %v", v.Addr, err)
}
ka.srcAddr, err = deserialiseNetAddress(v.Src)
if err != nil {
return fmt.Errorf("failed to deserialise netaddress "+
"%s: %v", v.Src, err)
}
ka.attempts = v.Attempts
ka.lastattempt = time.Unix(v.LastAttempt, 0)
ka.lastsuccess = time.Unix(v.LastSuccess, 0)
a.addrIndex[NetAddressKey(ka.na)] = ka
}
for i := range sam.NewBuckets {
for _, val := range sam.NewBuckets[i] {
ka, ok := a.addrIndex[val]
if !ok {
return fmt.Errorf("newbucket contains %s but "+
"none in address list", val)
}
if ka.refs == 0 {
a.nNew++
}
ka.refs++
a.addrNew[i][val] = ka
}
}
for i := range sam.TriedBuckets {
for _, val := range sam.TriedBuckets[i] {
ka, ok := a.addrIndex[val]
if !ok {
return fmt.Errorf("Newbucket contains %s but "+
"none in address list", val)
}
ka.tried = true
a.nTried++
a.addrTried[i].PushBack(ka)
}
}
// Sanity checking.
for k, v := range a.addrIndex {
if v.refs == 0 && !v.tried {
return fmt.Errorf("address %s after serialisation "+
"with no references", k)
}
if v.refs > 0 && v.tried {
return fmt.Errorf("address %s after serialisation "+
"which is both new and tried!", k)
}
}
return nil
}
func deserialiseNetAddress(addr string) (*btcwire.NetAddress, error) {
host, portStr, err := net.SplitHostPort(addr)
if err != nil {
return nil, err
}
ip := net.ParseIP(host)
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
na := btcwire.NewNetAddressIPPort(ip, uint16(port),
btcwire.SFNodeNetwork)
return na, nil
}
// Start begins the core address handler which manages a pool of known
// addresses, timeouts, and interval based writes.
func (a *AddrManager) Start() {
// Already started?
if a.started {
return
}
log.Trace("[AMGR] Starting address manager")
a.wg.Add(1)
go a.addressHandler()
a.started = true
// Load peers we already know about from file.
a.loadPeers()
}
// Stop gracefully shuts down the address manager by stopping the main handler.
func (a *AddrManager) Stop() error {
if a.shutdown {
log.Warnf("[AMGR] Address manager is already in the process of " +
"shutting down")
return nil
}
log.Infof("[AMGR] Address manager shutting down")
a.savePeers()
a.shutdown = true
a.quit <- true
a.wg.Wait()
return nil
}
// AddAddresses adds new addresses to the address manager. It enforces a max
// number of addresses and silently ignores duplicate addresses. It is
// safe for concurrent access.
func (a *AddrManager) AddAddresses(addrs []*btcwire.NetAddress,
srcAddr *btcwire.NetAddress) {
for _, na := range addrs {
a.updateAddress(na, srcAddr)
}
}
// AddAddress adds a new address to the address manager. It enforces a max
// number of addresses and silently ignores duplicate addresses. It is
// safe for concurrent access.
func (a *AddrManager) AddAddress(addr *btcwire.NetAddress,
srcAddr *btcwire.NetAddress) {
a.AddAddresses([]*btcwire.NetAddress{addr}, srcAddr)
}
// AddAddressByIP adds an address where we are given an ip:port and not a
// btcwire.NetAddress.
func (a *AddrManager) AddAddressByIP(addrIP string) {
// Split IP and port
addr, portStr, err := net.SplitHostPort(addrIP)
if err != nil {
log.Warnf("[AMGR] AddADddressByIP given bullshit adddress"+
"(%s): %v", err)
return
}
// Put it in btcwire.Netaddress
var na btcwire.NetAddress
na.Timestamp = time.Now()
na.IP = net.ParseIP(addr)
if na.IP == nil {
log.Error("[AMGR] Invalid ip address:", addr)
return
}
port, err := strconv.ParseUint(portStr, 10, 0)
if err != nil {
log.Error("[AMGR] Invalid port: ", portStr, err)
return
}
na.Port = uint16(port)
a.AddAddress(&na, &na) // XXX use correct src address
}
// NeedMoreAddresses returns whether or not the address manager needs more
// addresses.
func (a *AddrManager) NeedMoreAddresses() bool {
// NumAddresses handles concurrent access for us.
return a.NumAddresses() < needAddressThreshold
}
// NumAddresses returns the number of addresses known to the address manager.
func (a *AddrManager) NumAddresses() int {
a.mtx.Lock()
defer a.mtx.Unlock()
return a.nTried + a.nNew
}
// AddressCache returns the current address cache. It must be treated as
// read-only (but since it is a copy now, this is not as dangerous).
func (a *AddrManager) AddressCache() []*btcwire.NetAddress {
a.mtx.Lock()
defer a.mtx.Unlock()
if a.nNew+a.nTried == 0 {
return nil
}
allAddr := make([]*btcwire.NetAddress, a.nNew+a.nTried)
i := 0
// Iteration order is undefined here, but we randomise it anyway.
for _, v := range a.addrIndex {
allAddr[i] = v.na
i++
}
// Fisher-Yates shuffle the array
for i := range allAddr {
j := rand.Intn(i + 1)
allAddr[i], allAddr[j] = allAddr[j], allAddr[i]
}
numAddresses := len(allAddr) * getAddrPercent / 100
if numAddresses > getAddrMax {
numAddresses = getAddrMax
}
// slice off the limit we are willing to share.
return allAddr[:numAddresses]
}
// reset resets the address manager by reinitialising the random source
// and allocating fresh empty bucket storage.
func (a *AddrManager) reset() {
a.addrIndex = make(map[string]*knownAddress)
// fill key with bytes from a good random source.
io.ReadFull(crand.Reader, a.key[:])
for i := range a.addrNew {
a.addrNew[i] = make(map[string]*knownAddress)
}
for i := range a.addrTried {
a.addrTried[i] = list.New()
}
}
// New returns a new bitcoin address manager.
// Use Start to begin processing asynchronous address updates.
func NewAddrManager() *AddrManager {
am := AddrManager{
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
quit: make(chan bool),
}
am.reset()
return &am
}
// NetAddressKey returns a string key in the form of ip:port for IPv4 addresses
// or [ip]:port for IPv6 addresses.
func NetAddressKey(na *btcwire.NetAddress) string {
port := strconv.FormatUint(uint64(na.Port), 10)
addr := net.JoinHostPort(na.IP.String(), port)
return addr
}
// GetAddress returns a single address that should be routable. It picks a
// random one from the possible addresses with preference given to ones that
// have not been used recently and should not pick 'close' addresses
// consecutively.
func (a *AddrManager) GetAddress(class string, newBias int) *knownAddress {
// Protect concurrent access.
a.mtx.Lock()
defer a.mtx.Unlock()
if newBias > 100 {
newBias = 100
}
if newBias < 0 {
newBias = 0
}
// Bias between new and tried addresses.
triedCorrelation := math.Sqrt(float64(a.nTried)) *
(100.0 - float64(newBias))
newCorrelation := math.Sqrt(float64(a.nNew)) * float64(newBias)
if (newCorrelation+triedCorrelation)*a.rand.Float64() <
triedCorrelation {
// Tried entry.
large := 1 << 30
factor := 1.0
for {
// pick a random bucket.
bucket := a.rand.Intn(len(a.addrTried))
if a.addrTried[bucket].Len() == 0 {
continue
}
// Pick a random entry in the list
e := a.addrTried[bucket].Front()
for i :=
a.rand.Int63n(int64(a.addrTried[bucket].Len())); i > 0; i-- {
e = e.Next()
}
ka := e.Value.(*knownAddress)
randval := a.rand.Intn(large)
if float64(randval) < (factor * chance(ka) * float64(large)) {
log.Tracef("[AMGR] Selected %v from tried "+
"bucket", NetAddressKey(ka.na))
return ka
}
factor *= 1.2
}
} else {
// new node.
// XXX use a closure/function to avoid repeating this.
large := 1 << 30
factor := 1.0
for {
// Pick a random bucket.
bucket := a.rand.Intn(len(a.addrNew))
if len(a.addrNew[bucket]) == 0 {
continue
}
// Then, a random entry in it.
var ka *knownAddress
nth := a.rand.Intn(len(a.addrNew[bucket]))
for _, value := range a.addrNew[bucket] {
if nth == 0 {
ka = value
}
nth--
}
randval := a.rand.Intn(large)
if float64(randval) < (factor * chance(ka) * float64(large)) {
log.Tracef("[AMGR] Selected %v from new bucket",
NetAddressKey(ka.na))
return ka
}
factor *= 1.2
}
}
}
func (a *AddrManager) find(addr *btcwire.NetAddress) *knownAddress {
return a.addrIndex[NetAddressKey(addr)]
}
/*
* Connected - updates the last seen time but only every 20 minutes.
* Good - last tried = last success = last seen = now. attmempts = 0.
* - move address to tried.
* Attempted - set last tried to time. nattempts++
*/
func (a *AddrManager) Attempt(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
// find address.
// Surely address will be in tried by now?
ka := a.find(addr)
if ka == nil {
return
}
// set last tried time to now
ka.attempts++
ka.lastattempt = time.Now()
}
// Connected Marks the given address as currently connected and working at the
// current time. The address must already be known to AddrManager else it will
// be ignored.
func (a *AddrManager) Connected(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.find(addr)
if ka == nil {
return
}
// Update the time as long as it has been 20 minutes since last we did
// so.
now := time.Now()
if now.After(ka.na.Timestamp.Add(time.Minute * 20)) {
ka.na.Timestamp = time.Now()
}
}
// Good marks the given address as good. To be called after a successful
// connection and version exchange. If the address is unknown to the addresss
// manager it will be ignored.
func (a *AddrManager) Good(addr *btcwire.NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.find(addr)
if ka == nil {
return
}
now := time.Now()
ka.lastsuccess = now
ka.lastattempt = now
ka.na.Timestamp = now
ka.attempts = 0
// move to tried set, optionally evicting other addresses if neeed.
if ka.tried {
return
}
// ok, need to move it to tried.
// remove from all new buckets.
// record one of the buckets in question and call it the `first'
addrKey := NetAddressKey(addr)
oldBucket := -1
for i := range a.addrNew {
// we check for existance so we can record the first one
if _, ok := a.addrNew[i][addrKey]; ok {
delete(a.addrNew[i], addrKey)
ka.refs--
if oldBucket == -1 {
oldBucket = i
}
}
}
a.nNew--
if oldBucket == -1 {
// What? wasn't in a bucket after all.... Panic?
return
}
bucket := a.getTriedBucket(ka.na)
// Room in this tried bucket?
if a.addrTried[bucket].Len() < triedBucketSize {
ka.tried = true
a.addrTried[bucket].PushBack(ka)
a.nTried++
return
}
// No room, we have to evict something else.
entry := a.pickTried(bucket)
rmka := entry.Value.(*knownAddress)
// First bucket it would have been put in.
newBucket := a.getNewBucket(rmka.na, rmka.srcAddr)
// If no room in the original bucket, we put it in a bucket we just
// freed up a space in.
if len(a.addrNew[newBucket]) >= newBucketSize {
newBucket = oldBucket
}
// replace with ka in list.
ka.tried = true
entry.Value = ka
rmka.tried = false
rmka.refs++
// We don't touch a.nTried here since the number of tried stays the same
// but we decemented new above, raise it again since we're putting
// something back.
a.nNew++
rmkey := NetAddressKey(rmka.na)
log.Tracef("[AMGR] replacing %s with %s in tried", rmkey, addrKey)
// We made sure there is space here just above.
a.addrNew[newBucket][rmkey] = rmka
}
// RFC1918: IPv4 Private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
var rfc1918ten = net.IPNet{IP: net.ParseIP("10.0.0.0"),
Mask: net.CIDRMask(8, 32)}
var rfc1918oneninetwo = net.IPNet{IP: net.ParseIP("192.168.0.0"),
Mask: net.CIDRMask(16, 32)}
var rfc1918oneseventwo = net.IPNet{IP: net.ParseIP("172.16.0.0"),
Mask: net.CIDRMask(12, 32)}
func RFC1918(na *btcwire.NetAddress) bool {
return rfc1918ten.Contains(na.IP) ||
rfc1918oneninetwo.Contains(na.IP) ||
rfc1918oneseventwo.Contains(na.IP)
}
// RFC3849 IPv6 Documentation address (2001:0DB8::/32)
var rfc3849 = net.IPNet{IP: net.ParseIP("2001:0DB8::"),
Mask: net.CIDRMask(32, 128)}
func RFC3849(na *btcwire.NetAddress) bool {
return rfc3849.Contains(na.IP)
}
// RFC3927 IPv4 Autoconfig (169.254.0.0/16)
var rfc3927 = net.IPNet{IP: net.ParseIP("169.254.0.0"), Mask: net.CIDRMask(16, 32)}
func RFC3927(na *btcwire.NetAddress) bool {
return rfc3927.Contains(na.IP)
}
// RFC3964 IPv6 6to4 (2002::/16)
var rfc3964 = net.IPNet{IP: net.ParseIP("2002::"),
Mask: net.CIDRMask(16, 128)}
func RFC3964(na *btcwire.NetAddress) bool {
return rfc3964.Contains(na.IP)
}
// RFC4193 IPv6 unique local (FC00::/15)
var rfc4193 = net.IPNet{IP: net.ParseIP("FC00::"),
Mask: net.CIDRMask(15, 128)}
func RFC4193(na *btcwire.NetAddress) bool {
return rfc4193.Contains(na.IP)
}
// RFC4380 IPv6 Teredo tunneling (2001::/32)
var rfc4380 = net.IPNet{IP: net.ParseIP("2001::"),
Mask: net.CIDRMask(32, 128)}
func RFC4380(na *btcwire.NetAddress) bool {
return rfc4380.Contains(na.IP)
}
// RFC4843 IPv6 ORCHID: (2001:10::/28)
var rfc4843 = net.IPNet{IP: net.ParseIP("2001;10::"),
Mask: net.CIDRMask(28, 128)}
func RFC4843(na *btcwire.NetAddress) bool {
return rfc4843.Contains(na.IP)
}
// RFC4862 IPv6 Autoconfig (FE80::/64)
var rfc4862 = net.IPNet{IP: net.ParseIP("FE80::"),
Mask: net.CIDRMask(64, 128)}
func RFC4862(na *btcwire.NetAddress) bool {
return rfc4862.Contains(na.IP)
}
// RFC6052: IPv6 well known prefix (64:FF9B::/96)
var rfc6052 = net.IPNet{IP: net.ParseIP("64::FF9B::"),
Mask: net.CIDRMask(96, 128)}
func RFC6052(na *btcwire.NetAddress) bool {
return rfc6052.Contains(na.IP)
}
// RFC6145: IPv6 IPv4 translated address ::FFFF:0:0:0/96
var rfc6145 = net.IPNet{IP: net.ParseIP("::FFFF:0:0:0"),
Mask: net.CIDRMask(96, 128)}
func RFC6145(na *btcwire.NetAddress) bool {
return rfc6145.Contains(na.IP)
}
func Tor(na *btcwire.NetAddress) bool {
// bitcoind encodes a .onion address as a 16 byte number by decoding the
// address prior to the .onion (i.e. the key hash) base32 into a ten
// byte number. it then stores the first 6 bytes of the address as
// 0xfD, 0x87, 0xD8, 0x7e, 0xeb, 0x43
// making the format
// { magic 6 bytes, 10 bytes base32 decode of key hash }
// Since we use btcwire.NetAddress to represent and address we may
// well have to emulate this.
// XXX fillmein
return false
}
var zero4 = net.IPNet{IP: net.ParseIP("0.0.0.0"),
Mask: net.CIDRMask(8, 32)}
func Local(na *btcwire.NetAddress) bool {
return na.IP.IsLoopback() || zero4.Contains(na.IP)
}
// Valid returns true if an address is not one of the invalid formats.
// For IPv4 these are either a 0 or all bits set address. For IPv6 a zero
// address or one that matches the RFC3849 documentation address format.
func Valid(na *btcwire.NetAddress) bool {
// IsUnspecified returns if address is 0, so only all bits set, and
// RFC3849 need to be explicitly checked. bitcoind here also checks for
// invalid protocol addresses from earlier versions of bitcoind (before
// 0.2.9), however, since protocol versions before 70001 are
// disconnected by the bitcoin network now we have elided it.
return !(na.IP.IsUnspecified() || RFC3849(na) ||
na.IP.Equal(net.IPv4bcast))
}
// Routable returns whether a netaddress is routable on the public internet or
// not. This is true as long as the address is valid and is not in any reserved
// ranges.
func Routable(na *btcwire.NetAddress) bool {
return Valid(na) && !(RFC1918(na) || RFC3927(na) || RFC4862(na) ||
RFC4193(na) || Tor(na) || RFC4843(na) || Local(na))
}
// GroupKey returns a string representing the network group an address
// is part of.
// This is the /16 for IPv6, the /32 (/36 for he.net) for IPv6, the string
// "local" for a local address and the string "unroutable for an unroutable
// address.
func GroupKey(na *btcwire.NetAddress) string {
if Local(na) {
return "local"
}
if !Routable(na) {
return "unroutable"
}
if ipv4 := na.IP.To4(); ipv4 != nil {
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC6145(na) || RFC6052(na) {
// last four bytes are the ip address
ip := net.IP(na.IP[12:16])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC3964(na) {
ip := net.IP(na.IP[2:7])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if RFC4380(na) {
// teredo tunnels have the last 4 bytes as the v4 address XOR
// 0xff.
ip := net.IP(make([]byte, 4))
for i, byte := range na.IP[12:16] {
ip[i] = byte ^ 0xff
}
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
// XXX tor?
if Tor(na) {
panic("oga should have implemented me")
}
// OK, so now we know ourselves to be a IPv6 address.
// bitcoind uses /32 for everything but what it calls he.net, which is
// it uses /36 for. he.net is actualy 2001:470::/32, whereas bitcoind
// counts it as 2011:470::/32.
bits := 32
heNet := &net.IPNet{IP: net.ParseIP("2011:470::"),
Mask: net.CIDRMask(32, 128)}
if heNet.Contains(na.IP) {
bits = 36
}
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(bits, 128)}).String()
}