6e402deb35
This commit relicenses all code in this repository to the btcsuite developers.
956 lines
37 KiB
Go
956 lines
37 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2013-2014 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
// References:
|
|
// [SECG]: Recommended Elliptic Curve Domain Parameters
|
|
// http://www.secg.org/sec2-v2.pdf
|
|
//
|
|
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
|
|
|
|
// This package operates, internally, on Jacobian coordinates. For a given
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
|
// calculation can be performed within the transform (as in ScalarMult and
|
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
|
// reverse the transform than to operate in affine coordinates.
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"math/big"
|
|
"sync"
|
|
)
|
|
|
|
var (
|
|
// fieldOne is simply the integer 1 in field representation. It is
|
|
// used to avoid needing to create it multiple times during the internal
|
|
// arithmetic.
|
|
fieldOne = new(fieldVal).SetInt(1)
|
|
)
|
|
|
|
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
|
|
// interface from crypto/elliptic.
|
|
type KoblitzCurve struct {
|
|
*elliptic.CurveParams
|
|
q *big.Int
|
|
H int // cofactor of the curve.
|
|
|
|
// byteSize is simply the bit size / 8 and is provided for convenience
|
|
// since it is calculated repeatedly.
|
|
byteSize int
|
|
|
|
// bytePoints
|
|
bytePoints *[32][256][3]fieldVal
|
|
|
|
// The next 6 values are used specifically for endomorphism
|
|
// optimizations in ScalarMult.
|
|
|
|
// lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
|
|
lambda *big.Int
|
|
|
|
// beta must fulfill beta^3 = 1 mod P where P is the prime field of the
|
|
// curve.
|
|
beta *fieldVal
|
|
|
|
// See the EndomorphismVectors in gensecp256k1.go to see how these are
|
|
// derived.
|
|
a1 *big.Int
|
|
b1 *big.Int
|
|
a2 *big.Int
|
|
b2 *big.Int
|
|
}
|
|
|
|
// Params returns the parameters for the curve.
|
|
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
|
|
return curve.CurveParams
|
|
}
|
|
|
|
// bigAffineToField takes an affine point (x, y) as big integers and converts
|
|
// it to an affine point as field values.
|
|
func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
|
|
x3, y3 := new(fieldVal), new(fieldVal)
|
|
x3.SetByteSlice(x.Bytes())
|
|
y3.SetByteSlice(y.Bytes())
|
|
|
|
return x3, y3
|
|
}
|
|
|
|
// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
|
|
// converts it to an affine point as big integers.
|
|
func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
|
|
// Inversions are expensive and both point addition and point doubling
|
|
// are faster when working with points that have a z value of one. So,
|
|
// if the point needs to be converted to affine, go ahead and normalize
|
|
// the point itself at the same time as the calculation is the same.
|
|
var zInv, tempZ fieldVal
|
|
zInv.Set(z).Inverse() // zInv = Z^-1
|
|
tempZ.SquareVal(&zInv) // tempZ = Z^-2
|
|
x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
|
|
y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
|
|
z.SetInt(1) // Z = 1 (mag: 1)
|
|
|
|
// Normalize the x and y values.
|
|
x.Normalize()
|
|
y.Normalize()
|
|
|
|
// Convert the field values for the now affine point to big.Ints.
|
|
x3, y3 := new(big.Int), new(big.Int)
|
|
x3.SetBytes(x.Bytes()[:])
|
|
y3.SetBytes(y.Bytes()[:])
|
|
return x3, y3
|
|
}
|
|
|
|
// IsOnCurve returns boolean if the point (x,y) is on the curve.
|
|
// Part of the elliptic.Curve interface. This function differs from the
|
|
// crypto/elliptic algorithm since a = 0 not -3.
|
|
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
|
|
// Convert big ints to field values for faster arithmetic.
|
|
fx, fy := curve.bigAffineToField(x, y)
|
|
|
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
|
y2 := new(fieldVal).SquareVal(fy).Normalize()
|
|
result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
|
|
return y2.Equals(result)
|
|
}
|
|
|
|
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
|
|
// z values of 1 and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the ability to
|
|
// avoid the z value multiplications.
|
|
func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
|
|
//
|
|
// This results in a cost of 4 field multiplications, 2 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, v fieldVal
|
|
var negJ, neg2V, negX3 fieldVal
|
|
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
|
|
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
|
|
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
|
|
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
|
|
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
|
|
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
|
|
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
|
|
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
|
|
// same z value and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the known
|
|
// equivalence.
|
|
func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using a slightly modified version
|
|
// of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
|
|
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
|
|
//
|
|
// This results in a cost of 5 field multiplications, 2 field squarings,
|
|
// 9 field additions, and 0 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var a, b, c, d, e, f fieldVal
|
|
var negX1, negY1, negE, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
|
|
b.SquareVal(&a) // B = A^2 (mag: 1)
|
|
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
|
|
d.SquareVal(&c) // D = C^2 (mag: 1)
|
|
e.Mul2(x1, &b) // E = X1*B (mag: 1)
|
|
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
|
|
f.Mul2(x2, &b) // F = X2*B (mag: 1)
|
|
x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
|
|
negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
|
|
y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
|
|
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
|
|
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addZ2EqualsOne adds two Jacobian points when the second point is already
|
|
// known to have a z value of 1 (and the z value for the first point is not 1)
|
|
// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
|
|
// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
|
|
// add routine since less arithmetic is needed due to the ability to avoid
|
|
// multiplications by the second point's z value.
|
|
func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
|
|
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
|
|
//
|
|
// This results in a cost of 7 field multiplications, 4 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography. Since
|
|
// any number of Jacobian coordinates can represent the same affine
|
|
// point, the x and y values need to be converted to like terms. Due to
|
|
// the assumption made for this function that the second point has a z
|
|
// value of 1 (z2=1), the first point is already "converted".
|
|
var z1z1, u2, s2 fieldVal
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if x1.Equals(&u2) {
|
|
if y1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, hh, i, j, r, rr, v fieldVal
|
|
var negX1, negY1, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
|
|
hh.SquareVal(&h) // HH = H^2 (mag: 1)
|
|
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
|
|
// assumptions about the z values of the two points and stores the result in
|
|
// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
|
|
// is the slowest of the add routines due to requiring the most arithmetic.
|
|
func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
|
|
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
|
|
// V = U1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
|
//
|
|
// This results in a cost of 11 field multiplications, 5 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity. Since any number of Jacobian coordinates can represent the
|
|
// same affine point, the x and y values need to be converted to like
|
|
// terms.
|
|
var z1z1, z2z2, u1, u2, s1, s2 fieldVal
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
|
|
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if u1.Equals(&u2) {
|
|
if s1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, rr, v fieldVal
|
|
var negU1, negS1, negX3 fieldVal
|
|
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
|
|
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
|
|
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
|
|
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
|
|
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
|
|
// together and stores the result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
|
|
x3.Set(x2)
|
|
y3.Set(y2)
|
|
z3.Set(z2)
|
|
return
|
|
}
|
|
if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
|
|
x3.Set(x1)
|
|
y3.Set(y1)
|
|
z3.Set(z1)
|
|
return
|
|
}
|
|
|
|
// Faster point addition can be achieved when certain assumptions are
|
|
// met. For example, when both points have the same z value, arithmetic
|
|
// on the z values can be avoided. This section thus checks for these
|
|
// conditions and calls an appropriate add function which is accelerated
|
|
// by using those assumptions.
|
|
z1.Normalize()
|
|
z2.Normalize()
|
|
isZ1One := z1.Equals(fieldOne)
|
|
isZ2One := z2.Equals(fieldOne)
|
|
switch {
|
|
case isZ1One && isZ2One:
|
|
curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case z1.Equals(z2):
|
|
curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case isZ2One:
|
|
curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// None of the above assumptions are true, so fall back to generic
|
|
// point addition.
|
|
curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
|
}
|
|
|
|
// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
|
|
// interface.
|
|
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if x1.Sign() == 0 && y1.Sign() == 0 {
|
|
return x2, y2
|
|
}
|
|
if x2.Sign() == 0 && y2.Sign() == 0 {
|
|
return x1, y1
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point addition in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx2, fy2 := curve.bigAffineToField(x2, y2)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
|
|
// when the point is already known to have a z value of 1 and stores
|
|
// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
|
|
// performs faster point doubling than the generic routine since less arithmetic
|
|
// is needed due to the ability to avoid multiplication by the z value.
|
|
func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
|
|
// This function uses the assumptions that z1 is 1, thus the point
|
|
// doubling formulas reduce to:
|
|
//
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleGeneric performs point doubling on the passed Jacobian point without
|
|
// any assumptions about the z value and stores the result in (x3, y3, z3).
|
|
// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
|
|
// doubling routines due to requiring the most arithmetic.
|
|
func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Point doubling formula for Jacobian coordinates for the secp256k1
|
|
// curve:
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
|
|
// result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Doubling a point at infinity is still infinity.
|
|
if y1.IsZero() || z1.IsZero() {
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Slightly faster point doubling can be achieved when the z value is 1
|
|
// by avoiding the multiplication on the z value. This section calls
|
|
// a point doubling function which is accelerated by using that
|
|
// assumption when possible.
|
|
if z1.Normalize().Equals(fieldOne) {
|
|
curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Fall back to generic point doubling which works with arbitrary z
|
|
// values.
|
|
curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
|
|
}
|
|
|
|
// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
|
if y1.Sign() == 0 {
|
|
return new(big.Int), new(big.Int)
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point doubling in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// splitK returns a balanced length-two representation of k and their signs.
|
|
// This is algorithm 3.74 from [GECC].
|
|
//
|
|
// One thing of note about this algorithm is that no matter what c1 and c2 are,
|
|
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
|
|
// provable mathematically due to how a1/b1/a2/b2 are computed.
|
|
//
|
|
// c1 and c2 are chosen to minimize the max(k1,k2).
|
|
func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
|
|
// All math here is done with big.Int, which is slow.
|
|
// At some point, it might be useful to write something similar to
|
|
// fieldVal but for N instead of P as the prime field if this ends up
|
|
// being a bottleneck.
|
|
bigIntK := new(big.Int)
|
|
c1, c2 := new(big.Int), new(big.Int)
|
|
tmp1, tmp2 := new(big.Int), new(big.Int)
|
|
k1, k2 := new(big.Int), new(big.Int)
|
|
|
|
bigIntK.SetBytes(k)
|
|
// c1 = round(b2 * k / n) from step 4.
|
|
// Rounding isn't really necessary and costs too much, hence skipped
|
|
c1.Mul(curve.b2, bigIntK)
|
|
c1.Div(c1, curve.N)
|
|
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
|
|
// Rounding isn't really necessary and costs too much, hence skipped
|
|
c2.Mul(curve.b1, bigIntK)
|
|
c2.Div(c2, curve.N)
|
|
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
|
|
tmp1.Mul(c1, curve.a1)
|
|
tmp2.Mul(c2, curve.a2)
|
|
k1.Sub(bigIntK, tmp1)
|
|
k1.Add(k1, tmp2)
|
|
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
|
|
tmp1.Mul(c1, curve.b1)
|
|
tmp2.Mul(c2, curve.b2)
|
|
k2.Sub(tmp2, tmp1)
|
|
|
|
// Note Bytes() throws out the sign of k1 and k2. This matters
|
|
// since k1 and/or k2 can be negative. Hence, we pass that
|
|
// back separately.
|
|
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
|
|
}
|
|
|
|
// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
|
|
// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
|
|
// thus any other valid point on the elliptic curve has the same order.
|
|
func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
|
|
// Since the order of G is curve.N, we can use a much smaller number
|
|
// by doing modulo curve.N
|
|
if len(k) > curve.byteSize {
|
|
// Reduce k by performing modulo curve.N.
|
|
tmpK := new(big.Int).SetBytes(k)
|
|
tmpK.Mod(tmpK, curve.N)
|
|
return tmpK.Bytes()
|
|
}
|
|
|
|
return k
|
|
}
|
|
|
|
// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
|
|
// byte slices. The first is where 1s will be. The second is where -1s will
|
|
// be. NAF is convenient in that on average, only 1/3rd of its values are
|
|
// non-zero. This is algorithm 3.30 from [GECC].
|
|
//
|
|
// Essentially, this makes it possible to minimize the number of operations
|
|
// since the resulting ints returned will be at least 50% 0s.
|
|
func NAF(k []byte) ([]byte, []byte) {
|
|
// The essence of this algorithm is that whenever we have consecutive 1s
|
|
// in the binary, we want to put a -1 in the lowest bit and get a bunch
|
|
// of 0s up to the highest bit of consecutive 1s. This is due to this
|
|
// identity:
|
|
// 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
|
|
//
|
|
// The algorithm thus may need to go 1 more bit than the length of the
|
|
// bits we actually have, hence bits being 1 bit longer than was
|
|
// necessary. Since we need to know whether adding will cause a carry,
|
|
// we go from right-to-left in this addition.
|
|
var carry, curIsOne, nextIsOne bool
|
|
// these default to zero
|
|
retPos := make([]byte, len(k)+1)
|
|
retNeg := make([]byte, len(k)+1)
|
|
for i := len(k) - 1; i >= 0; i-- {
|
|
curByte := k[i]
|
|
for j := uint(0); j < 8; j++ {
|
|
curIsOne = curByte&1 == 1
|
|
if j == 7 {
|
|
if i == 0 {
|
|
nextIsOne = false
|
|
} else {
|
|
nextIsOne = k[i-1]&1 == 1
|
|
}
|
|
} else {
|
|
nextIsOne = curByte&2 == 2
|
|
}
|
|
if carry {
|
|
if curIsOne {
|
|
// This bit is 1, so continue to carry
|
|
// and don't need to do anything.
|
|
} else {
|
|
// We've hit a 0 after some number of
|
|
// 1s.
|
|
if nextIsOne {
|
|
// Start carrying again since
|
|
// a new sequence of 1s is
|
|
// starting.
|
|
retNeg[i+1] += 1 << j
|
|
} else {
|
|
// Stop carrying since 1s have
|
|
// stopped.
|
|
carry = false
|
|
retPos[i+1] += 1 << j
|
|
}
|
|
}
|
|
} else if curIsOne {
|
|
if nextIsOne {
|
|
// If this is the start of at least 2
|
|
// consecutive 1s, set the current one
|
|
// to -1 and start carrying.
|
|
retNeg[i+1] += 1 << j
|
|
carry = true
|
|
} else {
|
|
// This is a singleton, not consecutive
|
|
// 1s.
|
|
retPos[i+1] += 1 << j
|
|
}
|
|
}
|
|
curByte >>= 1
|
|
}
|
|
}
|
|
if carry {
|
|
retPos[0] = 1
|
|
}
|
|
|
|
return retPos, retNeg
|
|
}
|
|
|
|
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
|
// Point Q = ∞ (point at infinity).
|
|
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
|
|
// Decompose K into k1 and k2 in order to halve the number of EC ops.
|
|
// See Algorithm 3.74 in [GECC].
|
|
k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
|
|
|
|
// The main equation here to remember is:
|
|
// k * P = k1 * P + k2 * ϕ(P)
|
|
//
|
|
// P1 below is P in the equation, P2 below is ϕ(P) in the equation
|
|
p1x, p1y := curve.bigAffineToField(Bx, By)
|
|
p1yNeg := new(fieldVal).NegateVal(p1y, 1)
|
|
p1z := new(fieldVal).SetInt(1)
|
|
|
|
// NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
|
|
// goes through.
|
|
p2x := new(fieldVal).Mul2(p1x, curve.beta)
|
|
p2y := new(fieldVal).Set(p1y)
|
|
p2yNeg := new(fieldVal).NegateVal(p2y, 1)
|
|
p2z := new(fieldVal).SetInt(1)
|
|
|
|
// Flip the positive and negative values of the points as needed
|
|
// depending on the signs of k1 and k2. As mentioned in the equation
|
|
// above, each of k1 and k2 are multiplied by the respective point.
|
|
// Since -k * P is the same thing as k * -P, and the group law for
|
|
// elliptic curves states that P(x, y) = -P(x, -y), it's faster and
|
|
// simplifies the code to just make the point negative.
|
|
if signK1 == -1 {
|
|
p1y, p1yNeg = p1yNeg, p1y
|
|
}
|
|
if signK2 == -1 {
|
|
p2y, p2yNeg = p2yNeg, p2y
|
|
}
|
|
|
|
// NAF versions of k1 and k2 should have a lot more zeros.
|
|
//
|
|
// The Pos version of the bytes contain the +1s and the Neg versions
|
|
// contain the -1s.
|
|
k1PosNAF, k1NegNAF := NAF(k1)
|
|
k2PosNAF, k2NegNAF := NAF(k2)
|
|
k1Len := len(k1PosNAF)
|
|
k2Len := len(k2PosNAF)
|
|
|
|
m := k1Len
|
|
if m < k2Len {
|
|
m = k2Len
|
|
}
|
|
|
|
// Add left-to-right using the NAF optimization. See algorithm 3.77
|
|
// from [GECC]. This should be faster overall since there will be a lot
|
|
// more instances of 0, hence reducing the number of Jacobian additions
|
|
// at the cost of 1 possible extra doubling.
|
|
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
|
|
for i := 0; i < m; i++ {
|
|
// Since we're going left-to-right, pad the front with 0s.
|
|
if i < m-k1Len {
|
|
k1BytePos = 0
|
|
k1ByteNeg = 0
|
|
} else {
|
|
k1BytePos = k1PosNAF[i-(m-k1Len)]
|
|
k1ByteNeg = k1NegNAF[i-(m-k1Len)]
|
|
}
|
|
if i < m-k2Len {
|
|
k2BytePos = 0
|
|
k2ByteNeg = 0
|
|
} else {
|
|
k2BytePos = k2PosNAF[i-(m-k2Len)]
|
|
k2ByteNeg = k2NegNAF[i-(m-k2Len)]
|
|
}
|
|
|
|
for j := 7; j >= 0; j-- {
|
|
// Q = 2 * Q
|
|
curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
|
|
|
|
if k1BytePos&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
|
|
qx, qy, qz)
|
|
} else if k1ByteNeg&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
|
|
qx, qy, qz)
|
|
}
|
|
|
|
if k2BytePos&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
|
|
qx, qy, qz)
|
|
} else if k2ByteNeg&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
|
|
qx, qy, qz)
|
|
}
|
|
k1BytePos <<= 1
|
|
k1ByteNeg <<= 1
|
|
k2BytePos <<= 1
|
|
k2ByteNeg <<= 1
|
|
}
|
|
}
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big.Ints.
|
|
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
|
}
|
|
|
|
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
|
|
// big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
|
newK := curve.moduloReduce(k)
|
|
diff := len(curve.bytePoints) - len(newK)
|
|
|
|
// Point Q = ∞ (point at infinity).
|
|
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
|
|
// curve.bytePoints has all 256 byte points for each 8-bit window. The
|
|
// strategy is to add up the byte points. This is best understood by
|
|
// expressing k in base-256 which it already sort of is.
|
|
// Each "digit" in the 8-bit window can be looked up using bytePoints
|
|
// and added together.
|
|
for i, byteVal := range newK {
|
|
p := curve.bytePoints[diff+i][byteVal]
|
|
curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
|
|
}
|
|
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
|
}
|
|
|
|
// QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
|
|
// square roots via exponention.
|
|
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
|
|
return curve.q
|
|
}
|
|
|
|
var initonce sync.Once
|
|
var secp256k1 KoblitzCurve
|
|
|
|
func initAll() {
|
|
initS256()
|
|
}
|
|
|
|
// fromHex converts the passed hex string into a big integer pointer and will
|
|
// panic is there is an error. This is only provided for the hard-coded
|
|
// constants so errors in the source code can bet detected. It will only (and
|
|
// must only) be called for initialization purposes.
|
|
func fromHex(s string) *big.Int {
|
|
r, ok := new(big.Int).SetString(s, 16)
|
|
if !ok {
|
|
panic("invalid hex in source file: " + s)
|
|
}
|
|
return r
|
|
}
|
|
|
|
func initS256() {
|
|
// Curve parameters taken from [SECG] section 2.4.1.
|
|
secp256k1.CurveParams = new(elliptic.CurveParams)
|
|
secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
|
|
secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
|
|
secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
|
|
secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
|
|
secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
|
|
secp256k1.BitSize = 256
|
|
secp256k1.H = 1
|
|
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
|
|
big.NewInt(1)), big.NewInt(4))
|
|
|
|
// Provided for convenience since this gets computed repeatedly.
|
|
secp256k1.byteSize = secp256k1.BitSize / 8
|
|
|
|
// Deserialize and set the pre-computed table used to accelerate scalar
|
|
// base multiplication. This is hard-coded data, so any errors are
|
|
// panics because it means something is wrong in the source code.
|
|
if err := loadS256BytePoints(); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// Next 6 constants are from Hal Finney's bitcointalk.org post:
|
|
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
|
|
// May he rest in peace.
|
|
//
|
|
// They have also been independently derived from the code in the
|
|
// EndomorphismVectors function in gensecp256k1.go.
|
|
secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
|
|
secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
|
|
secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
|
|
secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
|
secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
|
|
// Alternatively, we can use the parameters below, however, they seem
|
|
// to be about 8% slower.
|
|
// secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
|
|
// secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
|
|
// secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
|
|
// secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
|
|
// secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
// secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
|
}
|
|
|
|
// S256 returns a Curve which implements secp256k1.
|
|
func S256() *KoblitzCurve {
|
|
initonce.Do(initAll)
|
|
return &secp256k1
|
|
}
|