lbcd/blockmanager.go
2014-01-01 10:16:15 -06:00

1137 lines
33 KiB
Go

// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"fmt"
"github.com/conformal/btcchain"
"github.com/conformal/btcdb"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"net"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
)
const (
chanBufferSize = 50
// blockDbNamePrefix is the prefix for the block database name. The
// database type is appended to this value to form the full block
// database name.
blockDbNamePrefix = "blocks"
)
// newPeerMsg signifies a newly connected peer to the block handler.
type newPeerMsg struct {
peer *peer
}
// blockMsg packages a bitcoin block message and the peer it came from together
// so the block handler has access to that information.
type blockMsg struct {
block *btcutil.Block
peer *peer
}
// invMsg packages a bitcoin inv message and the peer it came from together
// so the block handler has access to that information.
type invMsg struct {
inv *btcwire.MsgInv
peer *peer
}
// blockMsg packages a bitcoin block message and the peer it came from together
// so the block handler has access to that information.
type headersMsg struct {
headers *btcwire.MsgHeaders
peer *peer
}
// donePeerMsg signifies a newly disconnected peer to the block handler.
type donePeerMsg struct {
peer *peer
}
// txMsg packages a bitcoin tx message and the peer it came from together
// so the block handler has access to that information.
type txMsg struct {
tx *btcutil.Tx
peer *peer
}
// blockManager provides a concurrency safe block manager for handling all
// incoming blocks.
type blockManager struct {
server *server
started int32
shutdown int32
blockChain *btcchain.BlockChain
blockPeer map[btcwire.ShaHash]*peer
requestedTxns map[btcwire.ShaHash]bool
requestedBlocks map[btcwire.ShaHash]bool
receivedLogBlocks int64
receivedLogTx int64
lastBlockLogTime time.Time
processingReqs bool
syncPeer *peer
msgChan chan interface{}
wg sync.WaitGroup
quit chan bool
headerPool map[btcwire.ShaHash]*headerstr
headerOrphan map[btcwire.ShaHash]*headerstr
fetchingHeaders bool
startBlock *btcwire.ShaHash
fetchBlock *btcwire.ShaHash
lastBlock *btcwire.ShaHash
latestCheckpoint *btcchain.Checkpoint
}
type headerstr struct {
header *btcwire.BlockHeader
next *headerstr
height int
sha btcwire.ShaHash
}
// startSync will choose the best peer among the available candidate peers to
// download/sync the blockchain from. When syncing is already running, it
// simply returns. It also examines the candidates for any which are no longer
// candidates and removes them as needed.
func (b *blockManager) startSync(peers *list.List) {
// Return now if we're already syncing.
if b.syncPeer != nil {
return
}
// Find the height of the current known best block.
_, height, err := b.server.db.NewestSha()
if err != nil {
bmgrLog.Errorf("%v", err)
return
}
var bestPeer *peer
var enext *list.Element
for e := peers.Front(); e != nil; e = enext {
enext = e.Next()
p := e.Value.(*peer)
// Remove sync candidate peers that are no longer candidates due
// to passing their latest known block. NOTE: The < is
// intentional as opposed to <=. While techcnically the peer
// doesn't have a later block when it's equal, it will likely
// have one soon so it is a reasonable choice. It also allows
// the case where both are at 0 such as during regression test.
if p.lastBlock < int32(height) {
peers.Remove(e)
continue
}
// TODO(davec): Use a better algorithm to choose the best peer.
// For now, just pick the first available candidate.
bestPeer = p
}
// Start syncing from the best peer if one was selected.
if bestPeer != nil {
locator, err := b.blockChain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("Failed to get block locator for the "+
"latest block: %v", err)
return
}
bmgrLog.Infof("Syncing to block height %d from peer %v",
bestPeer.lastBlock, bestPeer.addr)
// if starting from the beginning fetch headers and download
// blocks based on that, otherwise compute the block download
// via inv messages. Regression test mode does not support the
// headers-first approach so do normal block downloads when in
// regression test mode.
if height == 0 && !cfg.RegressionTest && !cfg.DisableCheckpoints {
bestPeer.PushGetHeadersMsg(locator)
b.fetchingHeaders = true
} else {
bestPeer.PushGetBlocksMsg(locator, &zeroHash)
}
b.syncPeer = bestPeer
} else {
bmgrLog.Warnf("No sync peer candidates available")
}
}
// isSyncCandidate returns whether or not the peer is a candidate to consider
// syncing from.
func (b *blockManager) isSyncCandidate(p *peer) bool {
// Typically a peer is not a candidate for sync if it's not a full node,
// however regression test is special in that the regression tool is
// not a full node and still needs to be considered a sync candidate.
if cfg.RegressionTest {
// The peer is not a candidate if it's not coming from localhost
// or the hostname can't be determined for some reason.
host, _, err := net.SplitHostPort(p.addr)
if err != nil {
return false
}
if host != "127.0.0.1" && host != "localhost" {
return false
}
} else {
// The peer is not a candidate for sync if it's not a full node.
if p.services&btcwire.SFNodeNetwork != btcwire.SFNodeNetwork {
return false
}
}
// Candidate if all checks passed.
return true
}
// handleNewPeerMsg deals with new peers that have signalled they may
// be considered as a sync peer (they have already successfully negotiated). It
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
func (b *blockManager) handleNewPeerMsg(peers *list.List, p *peer) {
// Ignore if in the process of shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
bmgrLog.Infof("New valid peer %s", p)
// Ignore the peer if it's not a sync candidate.
if !b.isSyncCandidate(p) {
return
}
// Add the peer as a candidate to sync from.
peers.PushBack(p)
// Start syncing by choosing the best candidate if needed.
b.startSync(peers)
}
// handleDonePeerMsg deals with peers that have signalled they are done. It
// removes the peer as a candidate for syncing and in the case where it was
// the current sync peer, attempts to select a new best peer to sync from. It
// is invoked from the syncHandler goroutine.
func (b *blockManager) handleDonePeerMsg(peers *list.List, p *peer) {
// Remove the peer from the list of candidate peers.
for e := peers.Front(); e != nil; e = e.Next() {
if e.Value == p {
peers.Remove(e)
break
}
}
bmgrLog.Infof("Lost peer %s", p)
// Remove requested transactions from the global map so that they will
// be fetched from elsewhere next time we get an inv.
for k := range p.requestedTxns {
delete(b.requestedTxns, k)
}
// Remove requested blocks from the global map so that they will be
// fetched from elsewhere next time we get an inv.
// TODO(oga) we could possibly here check which peers have these blocks
// and request them now to speed things up a little.
for k := range p.requestedBlocks {
delete(b.requestedBlocks, k)
}
// Attempt to find a new peer to sync from if the quitting peer is the
// sync peer.
if b.syncPeer != nil && b.syncPeer == p {
b.syncPeer = nil
b.startSync(peers)
}
}
// logBlockHeight logs a new block height as an information message to show
// progress to the user. In order to prevent spam, it limits logging to one
// message every 10 seconds with duration and totals included.
func (b *blockManager) logBlockHeight(numTx, height int64, latestHash *btcwire.ShaHash) {
b.receivedLogBlocks++
b.receivedLogTx += numTx
now := time.Now()
duration := now.Sub(b.lastBlockLogTime)
if duration < time.Second*10 {
return
}
// Truncated the duration to 10s of milliseconds.
durationMillis := int64(duration / time.Millisecond)
tDuration := 10 * time.Millisecond * time.Duration(durationMillis/10)
// Attempt to get the timestamp of the latest block.
blockTimeStr := ""
block, err := b.server.db.FetchBlockBySha(latestHash)
if err == nil {
blockTimeStr = fmt.Sprintf(", %s", block.MsgBlock().Header.Timestamp)
}
// Log information about new block height.
blockStr := "blocks"
if b.receivedLogBlocks == 1 {
blockStr = "block"
}
txStr := "transactions"
if b.receivedLogTx == 1 {
txStr = "transaction"
}
bmgrLog.Infof("Processed %d %s in the last %s (%d %s, height %d%s)",
b.receivedLogBlocks, blockStr, tDuration, b.receivedLogTx,
txStr, height, blockTimeStr)
b.receivedLogBlocks = 0
b.receivedLogTx = 0
b.lastBlockLogTime = now
}
// handleTxMsg handles transaction messages from all peers.
func (b *blockManager) handleTxMsg(tmsg *txMsg) {
// Keep track of which peer the tx was sent from.
txHash := tmsg.tx.Sha()
// If we didn't ask for this transaction then the peer is misbehaving.
if _, ok := tmsg.peer.requestedTxns[*txHash]; !ok {
bmgrLog.Warnf("Got unrequested transaction %v from %s -- "+
"disconnecting", txHash, tmsg.peer.addr)
tmsg.peer.Disconnect()
return
}
// Process the transaction to include validation, insertion in the
// memory pool, orphan handling, etc.
err := tmsg.peer.server.txMemPool.ProcessTransaction(tmsg.tx)
// Remove transaction from request maps. Either the mempool/chain
// already knows about it and as such we shouldn't have any more
// instances of trying to fetch it, or we failed to insert and thus
// we'll retry next time we get an inv.
delete(tmsg.peer.requestedTxns, *txHash)
delete(b.requestedTxns, *txHash)
if err != nil {
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error.
if _, ok := err.(TxRuleError); ok {
bmgrLog.Debugf("Rejected transaction %v: %v", txHash, err)
} else {
bmgrLog.Errorf("Failed to process transaction %v: %v", txHash, err)
}
return
}
}
// current returns true if we believe we are synced with our peers, false if we
// still have blocks to check
func (b *blockManager) current() bool {
if !b.blockChain.IsCurrent() {
return false
}
// if blockChain thinks we are current and we have no syncPeer it
// is probably right.
if b.syncPeer == nil {
return true
}
_, height, err := b.server.db.NewestSha()
// No matter what chain thinks, if we are below the block we are
// syncing to we are not current.
// TODO(oga) we can get chain to return the height of each block when we
// parse an orphan, which would allow us to update the height of peers
// from what it was at initial handshake.
if err != nil || height < int64(b.syncPeer.lastBlock) {
return false
}
return true
}
// handleBlockMsg handles block messages from all peers.
func (b *blockManager) handleBlockMsg(bmsg *blockMsg) {
defer func() {
if b.startBlock != nil &&
len(bmsg.peer.requestedBlocks) < 10 {
// block queue getting short, ask for more.
b.fetchHeaderBlocks()
}
}()
// Keep track of which peer the block was sent from so the notification
// handler can request the parent blocks from the appropriate peer.
blockSha, _ := bmsg.block.Sha()
// If we didn't ask for this block then the peer is misbehaving.
if _, ok := bmsg.peer.requestedBlocks[*blockSha]; !ok {
// The regression test intentionally sends some blocks twice
// to test duplicate block insertion fails. Don't disconnect
// the peer or ignore the block when we're in regression test
// mode in this case so the chain code is actually fed the
// duplicate blocks.
if !cfg.RegressionTest {
bmgrLog.Warnf("Got unrequested block %v from %s -- "+
"disconnecting", blockSha, bmsg.peer.addr)
bmsg.peer.Disconnect()
return
}
}
b.blockPeer[*blockSha] = bmsg.peer
fastAdd := false
if b.fetchBlock != nil && blockSha.IsEqual(b.fetchBlock) {
firstblock, ok := b.headerPool[*blockSha]
if ok {
if b.latestCheckpoint == nil {
b.latestCheckpoint =
b.blockChain.LatestCheckpoint()
}
if int64(firstblock.height) <=
b.latestCheckpoint.Height {
fastAdd = true
}
if firstblock.next != nil {
b.fetchBlock = &firstblock.next.sha
}
}
}
// Process the block to include validation, best chain selection, orphan
// handling, etc.
err := b.blockChain.ProcessBlock(bmsg.block, fastAdd)
if fastAdd && blockSha.IsEqual(b.lastBlock) {
// have processed all blocks, switch to normal handling
b.fetchingHeaders = false
b.startBlock = nil
b.fetchBlock = nil
b.lastBlock = nil
b.headerPool = make(map[btcwire.ShaHash]*headerstr)
b.headerOrphan = make(map[btcwire.ShaHash]*headerstr)
}
// Remove block from request maps. Either chain knows about it and such
// we shouldn't have any more instances of trying to fetch it, or we
// failed to insert and thus we'll retry next time we get an inv.
delete(bmsg.peer.requestedBlocks, *blockSha)
delete(b.requestedBlocks, *blockSha)
if err != nil {
delete(b.blockPeer, *blockSha)
// When the error is a rule error, it means the block was simply
// rejected as opposed to something actually going wrong, so log
// it as such. Otherwise, something really did go wrong, so log
// it as an actual error.
if _, ok := err.(btcchain.RuleError); ok {
bmgrLog.Infof("Rejected block %v: %v", blockSha, err)
} else {
bmgrLog.Errorf("Failed to process block %v: %v", blockSha, err)
}
return
}
// Don't keep track of the peer that sent the block any longer if it's
// not an orphan.
if !b.blockChain.IsKnownOrphan(blockSha) {
delete(b.blockPeer, *blockSha)
}
// Log info about the new block height.
latestHash, height, err := b.server.db.NewestSha()
if err != nil {
bmgrLog.Warnf("Failed to obtain latest sha - %v", err)
return
}
b.logBlockHeight(int64(len(bmsg.block.MsgBlock().Transactions)), height,
latestHash)
// Sync the db to disk.
b.server.db.Sync()
}
// haveInventory returns whether or not the inventory represented by the passed
// inventory vector is known. This includes checking all of the various places
// inventory can be when it is in different states such as blocks that are part
// of the main chain, on a side chain, in the orphan pool, and transactions that
// in the memory pool (either the main pool or orphan pool).
func (b *blockManager) haveInventory(invVect *btcwire.InvVect) bool {
switch invVect.Type {
case btcwire.InvVect_Block:
// Ask chain if the block is known to it in any form (main
// chain, side chain, or orphan).
return b.blockChain.HaveBlock(&invVect.Hash)
case btcwire.InvVect_Tx:
// Ask the transaction memory pool if the transaction is known
// to it in any form (main pool or orphan).
if b.server.txMemPool.HaveTransaction(&invVect.Hash) {
return true
}
// Check if the transaction exists from the point of view of the
// end of the main chain.
return b.server.db.ExistsTxSha(&invVect.Hash)
}
// The requested inventory is is an unsupported type, so just claim
// it is known to avoid requesting it.
return true
}
// handleInvMsg handles inv messages from all peers.
// We examine the inventory advertised by the remote peer and act accordingly.
func (b *blockManager) handleInvMsg(imsg *invMsg) {
// Ignore invs from peers that aren't the sync if we are not current.
// Helps prevent fetching a mass of orphans.
if imsg.peer != b.syncPeer && !b.current() {
return
}
// Attempt to find the final block in the inventory list. There may
// not be one.
lastBlock := -1
invVects := imsg.inv.InvList
for i := len(invVects) - 1; i >= 0; i-- {
if invVects[i].Type == btcwire.InvTypeBlock {
lastBlock = i
break
}
}
// Request the advertised inventory if we don't already have it. Also,
// request parent blocks of orphans if we receive one we already have.
// Finally, attempt to detect potential stalls due to long side chains
// we already have and request more blocks to prevent them.
chain := b.blockChain
for i, iv := range invVects {
// Ignore unsupported inventory types.
if iv.Type != btcwire.InvTypeBlock && iv.Type != btcwire.InvTypeTx {
continue
}
// Add the inventory to the cache of known inventory
// for the peer.
imsg.peer.AddKnownInventory(iv)
if b.fetchingHeaders {
// if we are fetching headers and already know
// about a block, do not add process it.
if _, ok := b.headerPool[iv.Hash]; ok {
continue
}
}
// Request the inventory if we don't already have it.
if !b.haveInventory(iv) {
// Add it to the request queue.
imsg.peer.requestQueue.PushBack(iv)
continue
}
if iv.Type == btcwire.InvTypeBlock {
// The block is an orphan block that we already have.
// When the existing orphan was processed, it requested
// the missing parent blocks. When this scenario
// happens, it means there were more blocks missing
// than are allowed into a single inventory message. As
// a result, once this peer requested the final
// advertised block, the remote peer noticed and is now
// resending the orphan block as an available block
// to signal there are more missing blocks that need to
// be requested.
if chain.IsKnownOrphan(&iv.Hash) {
// Request blocks starting at the latest known
// up to the root of the orphan that just came
// in.
orphanRoot := chain.GetOrphanRoot(&iv.Hash)
locator, err := chain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("PEER: Failed to get block "+
"locator for the latest block: "+
"%v", err)
continue
}
imsg.peer.PushGetBlocksMsg(locator, orphanRoot)
continue
}
// We already have the final block advertised by this
// inventory message, so force a request for more. This
// should only happen if we're on a really long side
// chain.
if i == lastBlock {
// Request blocks after this one up to the
// final one the remote peer knows about (zero
// stop hash).
locator := chain.BlockLocatorFromHash(&iv.Hash)
imsg.peer.PushGetBlocksMsg(locator, &zeroHash)
}
}
}
// Request as much as possible at once. Anything that won't fit into
// the request will be requested on the next inv message.
numRequested := 0
gdmsg := btcwire.NewMsgGetData()
requestQueue := imsg.peer.requestQueue
for e := requestQueue.Front(); e != nil; e = requestQueue.Front() {
iv := e.Value.(*btcwire.InvVect)
imsg.peer.requestQueue.Remove(e)
switch iv.Type {
case btcwire.InvVect_Block:
// Request the block if there is not already a pending
// request.
if _, exists := b.requestedBlocks[iv.Hash]; !exists {
b.requestedBlocks[iv.Hash] = true
imsg.peer.requestedBlocks[iv.Hash] = true
gdmsg.AddInvVect(iv)
numRequested++
}
case btcwire.InvVect_Tx:
// Request the transaction if there is not already a
// pending request.
if _, exists := b.requestedTxns[iv.Hash]; !exists {
b.requestedTxns[iv.Hash] = true
imsg.peer.requestedTxns[iv.Hash] = true
gdmsg.AddInvVect(iv)
numRequested++
}
}
if numRequested >= btcwire.MaxInvPerMsg {
break
}
}
if len(gdmsg.InvList) > 0 {
imsg.peer.QueueMessage(gdmsg, nil)
}
}
// blockHandler is the main handler for the block manager. It must be run
// as a goroutine. It processes block and inv messages in a separate goroutine
// from the peer handlers so the block (MsgBlock) messages are handled by a
// single thread without needing to lock memory data structures. This is
// important because the block manager controls which blocks are needed and how
// the fetching should proceed.
func (b *blockManager) blockHandler() {
candidatePeers := list.New()
out:
for {
select {
case m := <-b.msgChan:
switch msg := m.(type) {
case *newPeerMsg:
b.handleNewPeerMsg(candidatePeers, msg.peer)
case *txMsg:
b.handleTxMsg(msg)
msg.peer.txProcessed <- true
case *blockMsg:
b.handleBlockMsg(msg)
msg.peer.blockProcessed <- true
case *invMsg:
b.handleInvMsg(msg)
case *headersMsg:
b.handleHeadersMsg(msg)
case *donePeerMsg:
b.handleDonePeerMsg(candidatePeers, msg.peer)
default:
// bitch and whine.
}
case <-b.quit:
break out
}
}
b.wg.Done()
bmgrLog.Trace("Block handler done")
}
// handleNotifyMsg handles notifications from btcchain. It does things such
// as request orphan block parents and relay accepted blocks to connected peers.
func (b *blockManager) handleNotifyMsg(notification *btcchain.Notification) {
switch notification.Type {
// An orphan block has been accepted by the block chain. Request
// its parents from the peer that sent it.
case btcchain.NTOrphanBlock:
orphanHash := notification.Data.(*btcwire.ShaHash)
if peer, exists := b.blockPeer[*orphanHash]; exists {
orphanRoot := b.blockChain.GetOrphanRoot(orphanHash)
locator, err := b.blockChain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("Failed to get block locator "+
"for the latest block: %v", err)
break
}
peer.PushGetBlocksMsg(locator, orphanRoot)
delete(b.blockPeer, *orphanRoot)
} else {
bmgrLog.Warnf("Notification for orphan %v with no peer",
orphanHash)
}
// A block has been accepted into the block chain. Relay it to other
// peers.
case btcchain.NTBlockAccepted:
// Don't relay if we are not current. Other peers that are
// current should already know about it.
if !b.current() {
return
}
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain accepted notification is not a block.")
break
}
// It's ok to ignore the error here since the notification is
// coming from the chain code which has already cached the hash.
hash, _ := block.Sha()
// Generate the inventory vector and relay it.
iv := btcwire.NewInvVect(btcwire.InvTypeBlock, hash)
b.server.RelayInventory(iv)
// A block has been connected to the main block chain.
case btcchain.NTBlockConnected:
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain connected notification is not a block.")
break
}
// Remove all of the transactions (except the coinbase) in the
// connected block from the transaction pool. Also, remove any
// transactions which are now double spends as a result of these
// new transactions. Note that removing a transaction from
// pool also removes any transactions which depend on it,
// recursively.
for _, tx := range block.Transactions()[1:] {
b.server.txMemPool.RemoveTransaction(tx)
b.server.txMemPool.RemoveDoubleSpends(tx)
}
// Notify frontends
if r := b.server.rpcServer; r != nil {
go func() {
r.NotifyBlockTXs(b.server.db, block)
r.NotifyBlockConnected(block)
}()
}
// A block has been disconnected from the main block chain.
case btcchain.NTBlockDisconnected:
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain disconnected notification is not a block.")
break
}
// Reinsert all of the transactions (except the coinbase) into
// the transaction pool.
for _, tx := range block.Transactions()[1:] {
err := b.server.txMemPool.MaybeAcceptTransaction(tx, nil)
if err != nil {
// Remove the transaction and all transactions
// that depend on it if it wasn't accepted into
// the transaction pool.
b.server.txMemPool.RemoveTransaction(tx)
}
}
// Notify frontends
if r := b.server.rpcServer; r != nil {
go r.NotifyBlockDisconnected(block)
}
}
}
// NewPeer informs the block manager of a newly active peer.
func (b *blockManager) NewPeer(p *peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &newPeerMsg{peer: p}
}
// QueueTx adds the passed transaction message and peer to the block handling
// queue.
func (b *blockManager) QueueTx(tx *btcutil.Tx, p *peer) {
// Don't accept more transactions if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
p.txProcessed <- false
return
}
b.msgChan <- &txMsg{tx: tx, peer: p}
}
// QueueBlock adds the passed block message and peer to the block handling queue.
func (b *blockManager) QueueBlock(block *btcutil.Block, p *peer) {
// Don't accept more blocks if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
p.blockProcessed <- false
return
}
b.msgChan <- &blockMsg{block: block, peer: p}
}
// QueueInv adds the passed inv message and peer to the block handling queue.
func (b *blockManager) QueueInv(inv *btcwire.MsgInv, p *peer) {
// No channel handling here because peers do not need to block on inv
// messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &invMsg{inv: inv, peer: p}
}
// QueueInv adds the passed headers message and peer to the block handling queue.
func (b *blockManager) QueueHeaders(headers *btcwire.MsgHeaders, p *peer) {
// No channel handling here because peers do not need to block on inv
// messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &headersMsg{headers: headers, peer: p}
}
// DonePeer informs the blockmanager that a peer has disconnected.
func (b *blockManager) DonePeer(p *peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &donePeerMsg{peer: p}
}
// Start begins the core block handler which processes block and inv messages.
func (b *blockManager) Start() {
// Already started?
if atomic.AddInt32(&b.started, 1) != 1 {
return
}
bmgrLog.Trace("Starting block manager")
b.wg.Add(1)
go b.blockHandler()
}
// Stop gracefully shuts down the block manager by stopping all asynchronous
// handlers and waiting for them to finish.
func (b *blockManager) Stop() error {
if atomic.AddInt32(&b.shutdown, 1) != 1 {
bmgrLog.Warnf("Block manager is already in the process of " +
"shutting down")
return nil
}
bmgrLog.Infof("Block manager shutting down")
close(b.quit)
b.wg.Wait()
return nil
}
// newBlockManager returns a new bitcoin block manager.
// Use Start to begin processing asynchronous block and inv updates.
func newBlockManager(s *server) (*blockManager, error) {
bm := blockManager{
server: s,
blockPeer: make(map[btcwire.ShaHash]*peer),
requestedTxns: make(map[btcwire.ShaHash]bool),
requestedBlocks: make(map[btcwire.ShaHash]bool),
lastBlockLogTime: time.Now(),
msgChan: make(chan interface{}, cfg.MaxPeers*3),
headerPool: make(map[btcwire.ShaHash]*headerstr),
headerOrphan: make(map[btcwire.ShaHash]*headerstr),
quit: make(chan bool),
}
bm.blockChain = btcchain.New(s.db, s.btcnet, bm.handleNotifyMsg)
bm.blockChain.DisableCheckpoints(cfg.DisableCheckpoints)
if cfg.DisableCheckpoints {
bmgrLog.Info("Checkpoints are disabled")
}
bmgrLog.Infof("Generating initial block node index. This may " +
"take a while...")
err := bm.blockChain.GenerateInitialIndex()
if err != nil {
return nil, err
}
bmgrLog.Infof("Block index generation complete")
return &bm, nil
}
// removeRegressionDB removes the existing regression test database if running
// in regression test mode and it already exists.
func removeRegressionDB(dbPath string) error {
// Dont do anything if not in regression test mode.
if !cfg.RegressionTest {
return nil
}
// Remove the old regression test database if it already exists.
fi, err := os.Stat(dbPath)
if err == nil {
btcdLog.Infof("Removing regression test database from '%s'", dbPath)
if fi.IsDir() {
err := os.RemoveAll(dbPath)
if err != nil {
return err
}
} else {
err := os.Remove(dbPath)
if err != nil {
return err
}
}
}
return nil
}
// dbPath returns the path to the block database given a database type.
func blockDbPath(dbType string) string {
// The database name is based on the database type.
dbName := blockDbNamePrefix + "_" + dbType
if dbType == "sqlite" {
dbName = dbName + ".db"
}
dbPath := filepath.Join(cfg.DataDir, dbName)
return dbPath
}
// warnMultipeDBs shows a warning if multiple block database types are detected.
// This is not a situation most users want. It is handy for development however
// to support multiple side-by-side databases.
func warnMultipeDBs() {
// This is intentionally not using the known db types which depend
// on the database types compiled into the binary since we want to
// detect legacy db types as well.
dbTypes := []string{"leveldb", "sqlite"}
duplicateDbPaths := make([]string, 0, len(dbTypes)-1)
for _, dbType := range dbTypes {
if dbType == cfg.DbType {
continue
}
// Store db path as a duplicate db if it exists.
dbPath := blockDbPath(dbType)
if fileExists(dbPath) {
duplicateDbPaths = append(duplicateDbPaths, dbPath)
}
}
// Warn if there are extra databases.
if len(duplicateDbPaths) > 0 {
selectedDbPath := blockDbPath(cfg.DbType)
btcdLog.Warnf("WARNING: There are multiple block chain databases "+
"using different database types.\nYou probably don't "+
"want to waste disk space by having more than one.\n"+
"Your current database is located at [%v].\nThe "+
"additional database is located at %v", selectedDbPath,
duplicateDbPaths)
}
}
// loadBlockDB opens the block database and returns a handle to it.
func loadBlockDB() (btcdb.Db, error) {
warnMultipeDBs()
// The database name is based on the database type.
dbPath := blockDbPath(cfg.DbType)
// The regression test is special in that it needs a clean database for
// each run, so remove it now if it already exists.
removeRegressionDB(dbPath)
btcdLog.Infof("Loading block database from '%s'", dbPath)
db, err := btcdb.OpenDB(cfg.DbType, dbPath)
if err != nil {
// Return the error if it's not because the database doesn't
// exist.
if err != btcdb.DbDoesNotExist {
return nil, err
}
// Create the db if it does not exist.
err = os.MkdirAll(cfg.DataDir, 0700)
if err != nil {
return nil, err
}
db, err = btcdb.CreateDB(cfg.DbType, dbPath)
if err != nil {
return nil, err
}
}
// Get the latest block height from the database.
_, height, err := db.NewestSha()
if err != nil {
db.Close()
return nil, err
}
// Insert the appropriate genesis block for the bitcoin network being
// connected to if needed.
if height == -1 {
genesis := btcutil.NewBlock(activeNetParams.genesisBlock)
_, err := db.InsertBlock(genesis)
if err != nil {
db.Close()
return nil, err
}
btcdLog.Infof("Inserted genesis block %v",
activeNetParams.genesisHash)
height = 0
}
btcdLog.Infof("Block database loaded with block height %d", height)
return db, nil
}
// handleHeadersMsg is invoked when a peer receives a headers bitcoin
// message.
func (b *blockManager) handleHeadersMsg(bmsg *headersMsg) {
msg := bmsg.headers
nheaders := len(msg.Headers)
if nheaders == 0 {
bmgrLog.Infof("Received %v0 block headers: Fetching blocks",
len(b.headerPool))
b.fetchHeaderBlocks()
return
}
var blockhash btcwire.ShaHash
if b.latestCheckpoint == nil {
b.latestCheckpoint = b.blockChain.LatestCheckpoint()
}
for hdridx := range msg.Headers {
blockhash, _ = msg.Headers[hdridx].BlockSha()
var headerst headerstr
headerst.header = msg.Headers[hdridx]
headerst.sha = blockhash
prev, ok := b.headerPool[headerst.header.PrevBlock]
if ok {
if prev.next == nil {
prev.next = &headerst
} else {
bmgrLog.Infof("two children of the same block ??? %v %v %v", prev.sha, prev.next.sha, blockhash)
}
headerst.height = prev.height + 1
} else if headerst.header.PrevBlock.IsEqual(activeNetParams.genesisHash) {
ok = true
headerst.height = 1
b.startBlock = &headerst.sha
}
if int64(headerst.height) == b.latestCheckpoint.Height {
if headerst.sha.IsEqual(b.latestCheckpoint.Hash) {
// we can trust this header first download
// TODO flag this?
} else {
// XXX marker does not match, must throw
// away headers !?!?!
// XXX dont trust peer?
}
}
if ok {
b.headerPool[blockhash] = &headerst
b.lastBlock = &blockhash
} else {
bmgrLog.Infof("found orphan block %v", blockhash)
b.headerOrphan[headerst.header.PrevBlock] = &headerst
}
}
// Construct the getheaders request and queue it to be sent.
ghmsg := btcwire.NewMsgGetHeaders()
err := ghmsg.AddBlockLocatorHash(&blockhash)
if err != nil {
bmgrLog.Infof("msgheaders bad addheaders", blockhash)
return
}
b.syncPeer.QueueMessage(ghmsg, nil)
}
// fetchHeaderBlocks is creates and sends a request to the syncPeer for
// the next list of blocks to downloaded.
func (b *blockManager) fetchHeaderBlocks() {
gdmsg := btcwire.NewMsgGetData()
numRequested := 0
startBlock := b.startBlock
for {
if b.startBlock == nil {
break
}
blockhash := b.startBlock
firstblock, ok := b.headerPool[*blockhash]
if !ok {
bmgrLog.Warnf("current fetch block %v missing from headerPool", blockhash)
break
}
var iv btcwire.InvVect
iv.Hash = *blockhash
iv.Type = btcwire.InvTypeBlock
if !b.haveInventory(&iv) {
b.requestedBlocks[*blockhash] = true
b.syncPeer.requestedBlocks[*blockhash] = true
gdmsg.AddInvVect(&iv)
numRequested++
}
if b.fetchBlock == nil {
b.fetchBlock = b.startBlock
}
if firstblock.next == nil {
b.startBlock = nil
break
} else {
b.startBlock = &firstblock.next.sha
}
if numRequested >= btcwire.MaxInvPerMsg {
break
}
}
if len(gdmsg.InvList) > 0 {
bmgrLog.Debugf("requesting block %v len %v\n", startBlock, len(gdmsg.InvList))
b.syncPeer.QueueMessage(gdmsg, nil)
}
}