lbcd/wire/blockheader.go
Olaoluwa Osuntokun 48abfdf87c BIP0144+wire: add a MessageEncoding variant for serialization/deserialization
This commit modifies the existing wire.Message interface to introduce a
new MessageEncoding variant which dictates the exact encoding to be
used when serializing and deserializing messages. Such an option is now
necessary due to the segwit soft-fork package, as btcd will need to be
able to optionally encode transactions/blocks without witness data to
un-upgraded peers.

Two new functions have been introduced: ReadMessageWithEncodingN and
WriteMessageWithEncodingN which wrap BtcDecode/BtcEncode with the
desired encoding format.
2017-08-13 23:17:40 -05:00

128 lines
4.8 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package wire
import (
"bytes"
"io"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
)
// MaxBlockHeaderPayload is the maximum number of bytes a block header can be.
// Version 4 bytes + Timestamp 4 bytes + Bits 4 bytes + Nonce 4 bytes +
// PrevBlock and MerkleRoot hashes.
const MaxBlockHeaderPayload = 16 + (chainhash.HashSize * 2)
// BlockHeader defines information about a block and is used in the bitcoin
// block (MsgBlock) and headers (MsgHeaders) messages.
type BlockHeader struct {
// Version of the block. This is not the same as the protocol version.
Version int32
// Hash of the previous block in the block chain.
PrevBlock chainhash.Hash
// Merkle tree reference to hash of all transactions for the block.
MerkleRoot chainhash.Hash
// Time the block was created. This is, unfortunately, encoded as a
// uint32 on the wire and therefore is limited to 2106.
Timestamp time.Time
// Difficulty target for the block.
Bits uint32
// Nonce used to generate the block.
Nonce uint32
}
// blockHeaderLen is a constant that represents the number of bytes for a block
// header.
const blockHeaderLen = 80
// BlockHash computes the block identifier hash for the given block header.
func (h *BlockHeader) BlockHash() chainhash.Hash {
// Encode the header and double sha256 everything prior to the number of
// transactions. Ignore the error returns since there is no way the
// encode could fail except being out of memory which would cause a
// run-time panic.
buf := bytes.NewBuffer(make([]byte, 0, MaxBlockHeaderPayload))
_ = writeBlockHeader(buf, 0, h)
return chainhash.DoubleHashH(buf.Bytes())
}
// BtcDecode decodes r using the bitcoin protocol encoding into the receiver.
// This is part of the Message interface implementation.
// See Deserialize for decoding block headers stored to disk, such as in a
// database, as opposed to decoding block headers from the wire.
func (h *BlockHeader) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error {
return readBlockHeader(r, pver, h)
}
// BtcEncode encodes the receiver to w using the bitcoin protocol encoding.
// This is part of the Message interface implementation.
// See Serialize for encoding block headers to be stored to disk, such as in a
// database, as opposed to encoding block headers for the wire.
func (h *BlockHeader) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error {
return writeBlockHeader(w, pver, h)
}
// Deserialize decodes a block header from r into the receiver using a format
// that is suitable for long-term storage such as a database while respecting
// the Version field.
func (h *BlockHeader) Deserialize(r io.Reader) error {
// At the current time, there is no difference between the wire encoding
// at protocol version 0 and the stable long-term storage format. As
// a result, make use of readBlockHeader.
return readBlockHeader(r, 0, h)
}
// Serialize encodes a block header from r into the receiver using a format
// that is suitable for long-term storage such as a database while respecting
// the Version field.
func (h *BlockHeader) Serialize(w io.Writer) error {
// At the current time, there is no difference between the wire encoding
// at protocol version 0 and the stable long-term storage format. As
// a result, make use of writeBlockHeader.
return writeBlockHeader(w, 0, h)
}
// NewBlockHeader returns a new BlockHeader using the provided version, previous
// block hash, merkle root hash, difficulty bits, and nonce used to generate the
// block with defaults for the remaining fields.
func NewBlockHeader(version int32, prevHash, merkleRootHash *chainhash.Hash,
bits uint32, nonce uint32) *BlockHeader {
// Limit the timestamp to one second precision since the protocol
// doesn't support better.
return &BlockHeader{
Version: version,
PrevBlock: *prevHash,
MerkleRoot: *merkleRootHash,
Timestamp: time.Unix(time.Now().Unix(), 0),
Bits: bits,
Nonce: nonce,
}
}
// readBlockHeader reads a bitcoin block header from r. See Deserialize for
// decoding block headers stored to disk, such as in a database, as opposed to
// decoding from the wire.
func readBlockHeader(r io.Reader, pver uint32, bh *BlockHeader) error {
return readElements(r, &bh.Version, &bh.PrevBlock, &bh.MerkleRoot,
(*uint32Time)(&bh.Timestamp), &bh.Bits, &bh.Nonce)
}
// writeBlockHeader writes a bitcoin block header to w. See Serialize for
// encoding block headers to be stored to disk, such as in a database, as
// opposed to encoding for the wire.
func writeBlockHeader(w io.Writer, pver uint32, bh *BlockHeader) error {
sec := uint32(bh.Timestamp.Unix())
return writeElements(w, bh.Version, &bh.PrevBlock, &bh.MerkleRoot,
sec, bh.Bits, bh.Nonce)
}