lbcd/integration/rpctest/blockgen.go
Dave Collins 1ae306021e
rpctest: Make subpackage of integration.
This makes the rpctest package a subpackage of the integration package
since its primary purpose is for integration testing.
2017-05-11 15:17:29 -05:00

192 lines
5.8 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package rpctest
import (
"errors"
"math"
"math/big"
"runtime"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// solveBlock attempts to find a nonce which makes the passed block header hash
// to a value less than the target difficulty. When a successful solution is
// found true is returned and the nonce field of the passed header is updated
// with the solution. False is returned if no solution exists.
func solveBlock(header *wire.BlockHeader, targetDifficulty *big.Int) bool {
// sbResult is used by the solver goroutines to send results.
type sbResult struct {
found bool
nonce uint32
}
// solver accepts a block header and a nonce range to test. It is
// intended to be run as a goroutine.
quit := make(chan bool)
results := make(chan sbResult)
solver := func(hdr wire.BlockHeader, startNonce, stopNonce uint32) {
// We need to modify the nonce field of the header, so make sure
// we work with a copy of the original header.
for i := startNonce; i >= startNonce && i <= stopNonce; i++ {
select {
case <-quit:
return
default:
hdr.Nonce = i
hash := hdr.BlockHash()
if blockchain.HashToBig(&hash).Cmp(targetDifficulty) <= 0 {
results <- sbResult{true, i}
return
}
}
}
results <- sbResult{false, 0}
}
startNonce := uint32(0)
stopNonce := uint32(math.MaxUint32)
numCores := uint32(runtime.NumCPU())
noncesPerCore := (stopNonce - startNonce) / numCores
for i := uint32(0); i < numCores; i++ {
rangeStart := startNonce + (noncesPerCore * i)
rangeStop := startNonce + (noncesPerCore * (i + 1)) - 1
if i == numCores-1 {
rangeStop = stopNonce
}
go solver(*header, rangeStart, rangeStop)
}
for i := uint32(0); i < numCores; i++ {
result := <-results
if result.found {
close(quit)
header.Nonce = result.nonce
return true
}
}
return false
}
// standardCoinbaseScript returns a standard script suitable for use as the
// signature script of the coinbase transaction of a new block. In particular,
// it starts with the block height that is required by version 2 blocks.
func standardCoinbaseScript(nextBlockHeight int32, extraNonce uint64) ([]byte, error) {
return txscript.NewScriptBuilder().AddInt64(int64(nextBlockHeight)).
AddInt64(int64(extraNonce)).Script()
}
// createCoinbaseTx returns a coinbase transaction paying an appropriate
// subsidy based on the passed block height to the provided address.
func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int32,
addr btcutil.Address, net *chaincfg.Params) (*btcutil.Tx, error) {
// Create the script to pay to the provided payment address.
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
Value: blockchain.CalcBlockSubsidy(nextBlockHeight, net),
PkScript: pkScript,
})
return btcutil.NewTx(tx), nil
}
// CreateBlock creates a new block building from the previous block with a
// specified blockversion and timestamp. If the timestamp passed is zero (not
// initialized), then the timestamp of the previous block will be used plus 1
// second is used. Passing nil for the previous block results in a block that
// builds off of the genesis block for the specified chain.
func CreateBlock(prevBlock *btcutil.Block, inclusionTxs []*btcutil.Tx,
blockVersion int32, blockTime time.Time,
miningAddr btcutil.Address, net *chaincfg.Params) (*btcutil.Block, error) {
var (
prevHash *chainhash.Hash
blockHeight int32
prevBlockTime time.Time
)
// If the previous block isn't specified, then we'll construct a block
// that builds off of the genesis block for the chain.
if prevBlock == nil {
prevHash = net.GenesisHash
blockHeight = 1
prevBlockTime = net.GenesisBlock.Header.Timestamp.Add(time.Minute)
} else {
prevHash = prevBlock.Hash()
blockHeight = prevBlock.Height() + 1
prevBlockTime = prevBlock.MsgBlock().Header.Timestamp
}
// If a target block time was specified, then use that as the header's
// timestamp. Otherwise, add one second to the previous block unless
// it's the genesis block in which case use the current time.
var ts time.Time
switch {
case !blockTime.IsZero():
ts = blockTime
default:
ts = prevBlockTime.Add(time.Second)
}
extraNonce := uint64(0)
coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce)
if err != nil {
return nil, err
}
coinbaseTx, err := createCoinbaseTx(coinbaseScript, blockHeight,
miningAddr, net)
if err != nil {
return nil, err
}
// Create a new block ready to be solved.
blockTxns := []*btcutil.Tx{coinbaseTx}
if inclusionTxs != nil {
blockTxns = append(blockTxns, inclusionTxs...)
}
merkles := blockchain.BuildMerkleTreeStore(blockTxns)
var block wire.MsgBlock
block.Header = wire.BlockHeader{
Version: blockVersion,
PrevBlock: *prevHash,
MerkleRoot: *merkles[len(merkles)-1],
Timestamp: ts,
Bits: net.PowLimitBits,
}
for _, tx := range blockTxns {
if err := block.AddTransaction(tx.MsgTx()); err != nil {
return nil, err
}
}
found := solveBlock(&block.Header, net.PowLimit)
if !found {
return nil, errors.New("Unable to solve block")
}
utilBlock := btcutil.NewBlock(&block)
utilBlock.SetHeight(blockHeight)
return utilBlock, nil
}