lbcd/integration/csv_fork_test.go
Oliver Gugger 9250064837
integration: allow setting custom btcd exe path
To allow using a custom btcd executable, we allow specifying a path to a
file. If the path is empty, the harness will fall back to compiling one
from scratch.
2020-11-11 14:16:08 +01:00

695 lines
22 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular tests due to the following build tag.
// +build rpctest
package integration
import (
"bytes"
"runtime"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
csvKey = "csv"
)
// makeTestOutput creates an on-chain output paying to a freshly generated
// p2pkh output with the specified amount.
func makeTestOutput(r *rpctest.Harness, t *testing.T,
amt btcutil.Amount) (*btcec.PrivateKey, *wire.OutPoint, []byte, error) {
// Create a fresh key, then send some coins to an address spendable by
// that key.
key, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, nil, err
}
// Using the key created above, generate a pkScript which it's able to
// spend.
a, err := btcutil.NewAddressPubKey(key.PubKey().SerializeCompressed(), r.ActiveNet)
if err != nil {
return nil, nil, nil, err
}
selfAddrScript, err := txscript.PayToAddrScript(a.AddressPubKeyHash())
if err != nil {
return nil, nil, nil, err
}
output := &wire.TxOut{PkScript: selfAddrScript, Value: 1e8}
// Next, create and broadcast a transaction paying to the output.
fundTx, err := r.CreateTransaction([]*wire.TxOut{output}, 10, true)
if err != nil {
return nil, nil, nil, err
}
txHash, err := r.Node.SendRawTransaction(fundTx, true)
if err != nil {
return nil, nil, nil, err
}
// The transaction created above should be included within the next
// generated block.
blockHash, err := r.Node.Generate(1)
if err != nil {
return nil, nil, nil, err
}
assertTxInBlock(r, t, blockHash[0], txHash)
// Locate the output index of the coins spendable by the key we
// generated above, this is needed in order to create a proper utxo for
// this output.
var outputIndex uint32
if bytes.Equal(fundTx.TxOut[0].PkScript, selfAddrScript) {
outputIndex = 0
} else {
outputIndex = 1
}
utxo := &wire.OutPoint{
Hash: fundTx.TxHash(),
Index: outputIndex,
}
return key, utxo, selfAddrScript, nil
}
// TestBIP0113Activation tests for proper adherence of the BIP 113 rule
// constraint which requires all transaction finality tests to use the MTP of
// the last 11 blocks, rather than the timestamp of the block which includes
// them.
//
// Overview:
// - Pre soft-fork:
// - Transactions with non-final lock-times from the PoV of MTP should be
// rejected from the mempool.
// - Transactions within non-final MTP based lock-times should be accepted
// in valid blocks.
//
// - Post soft-fork:
// - Transactions with non-final lock-times from the PoV of MTP should be
// rejected from the mempool and when found within otherwise valid blocks.
// - Transactions with final lock-times from the PoV of MTP should be
// accepted to the mempool and mined in future block.
func TestBIP0113Activation(t *testing.T) {
t.Parallel()
btcdCfg := []string{"--rejectnonstd"}
r, err := rpctest.New(&chaincfg.SimNetParams, nil, btcdCfg, "")
if err != nil {
t.Fatal("unable to create primary harness: ", err)
}
if err := r.SetUp(true, 1); err != nil {
t.Fatalf("unable to setup test chain: %v", err)
}
defer r.TearDown()
// Create a fresh output for usage within the test below.
const outputValue = btcutil.SatoshiPerBitcoin
outputKey, testOutput, testPkScript, err := makeTestOutput(r, t,
outputValue)
if err != nil {
t.Fatalf("unable to create test output: %v", err)
}
// Fetch a fresh address from the harness, we'll use this address to
// send funds back into the Harness.
addr, err := r.NewAddress()
if err != nil {
t.Fatalf("unable to generate address: %v", err)
}
addrScript, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to generate addr script: %v", err)
}
// Now create a transaction with a lock time which is "final" according
// to the latest block, but not according to the current median time
// past.
tx := wire.NewMsgTx(1)
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *testOutput,
})
tx.AddTxOut(&wire.TxOut{
PkScript: addrScript,
Value: outputValue - 1000,
})
// We set the lock-time of the transaction to just one minute after the
// current MTP of the chain.
chainInfo, err := r.Node.GetBlockChainInfo()
if err != nil {
t.Fatalf("unable to query for chain info: %v", err)
}
tx.LockTime = uint32(chainInfo.MedianTime) + 1
sigScript, err := txscript.SignatureScript(tx, 0, testPkScript,
txscript.SigHashAll, outputKey, true)
if err != nil {
t.Fatalf("unable to generate sig: %v", err)
}
tx.TxIn[0].SignatureScript = sigScript
// This transaction should be rejected from the mempool as using MTP
// for transactions finality is now a policy rule. Additionally, the
// exact error should be the rejection of a non-final transaction.
_, err = r.Node.SendRawTransaction(tx, true)
if err == nil {
t.Fatalf("transaction accepted, but should be non-final")
} else if !strings.Contains(err.Error(), "not finalized") {
t.Fatalf("transaction should be rejected due to being "+
"non-final, instead: %v", err)
}
// However, since the block validation consensus rules haven't yet
// activated, a block including the transaction should be accepted.
txns := []*btcutil.Tx{btcutil.NewTx(tx)}
block, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
if err != nil {
t.Fatalf("unable to submit block: %v", err)
}
txid := tx.TxHash()
assertTxInBlock(r, t, block.Hash(), &txid)
// At this point, the block height should be 103: we mined 101 blocks
// to create a single mature output, then an additional block to create
// a new output, and then mined a single block above to include our
// transaction.
assertChainHeight(r, t, 103)
// Next, mine enough blocks to ensure that the soft-fork becomes
// activated. Assert that the block version of the second-to-last block
// in the final range is active.
// Next, mine ensure blocks to ensure that the soft-fork becomes
// active. We're at height 103 and we need 200 blocks to be mined after
// the genesis target period, so we mine 196 blocks. This'll put us at
// height 299. The getblockchaininfo call checks the state for the
// block AFTER the current height.
numBlocks := (r.ActiveNet.MinerConfirmationWindow * 2) - 4
if _, err := r.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
assertChainHeight(r, t, 299)
assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdActive)
// The timeLockDeltas slice represents a series of deviations from the
// current MTP which will be used to test border conditions w.r.t
// transaction finality. -1 indicates 1 second prior to the MTP, 0
// indicates the current MTP, and 1 indicates 1 second after the
// current MTP.
//
// This time, all transactions which are final according to the MTP
// *should* be accepted to both the mempool and within a valid block.
// While transactions with lock-times *after* the current MTP should be
// rejected.
timeLockDeltas := []int64{-1, 0, 1}
for _, timeLockDelta := range timeLockDeltas {
chainInfo, err = r.Node.GetBlockChainInfo()
if err != nil {
t.Fatalf("unable to query for chain info: %v", err)
}
medianTimePast := chainInfo.MedianTime
// Create another test output to be spent shortly below.
outputKey, testOutput, testPkScript, err = makeTestOutput(r, t,
outputValue)
if err != nil {
t.Fatalf("unable to create test output: %v", err)
}
// Create a new transaction with a lock-time past the current known
// MTP.
tx = wire.NewMsgTx(1)
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *testOutput,
})
tx.AddTxOut(&wire.TxOut{
PkScript: addrScript,
Value: outputValue - 1000,
})
tx.LockTime = uint32(medianTimePast + timeLockDelta)
sigScript, err = txscript.SignatureScript(tx, 0, testPkScript,
txscript.SigHashAll, outputKey, true)
if err != nil {
t.Fatalf("unable to generate sig: %v", err)
}
tx.TxIn[0].SignatureScript = sigScript
// If the time-lock delta is greater than -1, then the
// transaction should be rejected from the mempool and when
// included within a block. A time-lock delta of -1 should be
// accepted as it has a lock-time of one
// second _before_ the current MTP.
_, err = r.Node.SendRawTransaction(tx, true)
if err == nil && timeLockDelta >= 0 {
t.Fatal("transaction was accepted into the mempool " +
"but should be rejected!")
} else if err != nil && !strings.Contains(err.Error(), "not finalized") {
t.Fatalf("transaction should be rejected from mempool "+
"due to being non-final, instead: %v", err)
}
txns = []*btcutil.Tx{btcutil.NewTx(tx)}
_, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
if err == nil && timeLockDelta >= 0 {
t.Fatal("block should be rejected due to non-final " +
"txn, but was accepted")
} else if err != nil && !strings.Contains(err.Error(), "unfinalized") {
t.Fatalf("block should be rejected due to non-final "+
"tx, instead: %v", err)
}
}
}
// createCSVOutput creates an output paying to a trivially redeemable CSV
// pkScript with the specified time-lock.
func createCSVOutput(r *rpctest.Harness, t *testing.T,
numSatoshis btcutil.Amount, timeLock int32,
isSeconds bool) ([]byte, *wire.OutPoint, *wire.MsgTx, error) {
// Convert the time-lock to the proper sequence lock based according to
// if the lock is seconds or time based.
sequenceLock := blockchain.LockTimeToSequence(isSeconds,
uint32(timeLock))
// Our CSV script is simply: <sequenceLock> OP_CSV OP_DROP
b := txscript.NewScriptBuilder().
AddInt64(int64(sequenceLock)).
AddOp(txscript.OP_CHECKSEQUENCEVERIFY).
AddOp(txscript.OP_DROP)
csvScript, err := b.Script()
if err != nil {
return nil, nil, nil, err
}
// Using the script generated above, create a P2SH output which will be
// accepted into the mempool.
p2shAddr, err := btcutil.NewAddressScriptHash(csvScript, r.ActiveNet)
if err != nil {
return nil, nil, nil, err
}
p2shScript, err := txscript.PayToAddrScript(p2shAddr)
if err != nil {
return nil, nil, nil, err
}
output := &wire.TxOut{
PkScript: p2shScript,
Value: int64(numSatoshis),
}
// Finally create a valid transaction which creates the output crafted
// above.
tx, err := r.CreateTransaction([]*wire.TxOut{output}, 10, true)
if err != nil {
return nil, nil, nil, err
}
var outputIndex uint32
if !bytes.Equal(tx.TxOut[0].PkScript, p2shScript) {
outputIndex = 1
}
utxo := &wire.OutPoint{
Hash: tx.TxHash(),
Index: outputIndex,
}
return csvScript, utxo, tx, nil
}
// spendCSVOutput spends an output previously created by the createCSVOutput
// function. The sigScript is a trivial push of OP_TRUE followed by the
// redeemScript to pass P2SH evaluation.
func spendCSVOutput(redeemScript []byte, csvUTXO *wire.OutPoint,
sequence uint32, targetOutput *wire.TxOut,
txVersion int32) (*wire.MsgTx, error) {
tx := wire.NewMsgTx(txVersion)
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *csvUTXO,
Sequence: sequence,
})
tx.AddTxOut(targetOutput)
b := txscript.NewScriptBuilder().
AddOp(txscript.OP_TRUE).
AddData(redeemScript)
sigScript, err := b.Script()
if err != nil {
return nil, err
}
tx.TxIn[0].SignatureScript = sigScript
return tx, nil
}
// assertTxInBlock asserts a transaction with the specified txid is found
// within the block with the passed block hash.
func assertTxInBlock(r *rpctest.Harness, t *testing.T, blockHash *chainhash.Hash,
txid *chainhash.Hash) {
block, err := r.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
if len(block.Transactions) < 2 {
t.Fatal("target transaction was not mined")
}
for _, txn := range block.Transactions {
txHash := txn.TxHash()
if txn.TxHash() == txHash {
return
}
}
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %v: txid %v was not found in "+
"block %v", line, txid, blockHash)
}
// TestBIP0068AndBIP0112Activation tests for the proper adherence to the BIP
// 112 and BIP 68 rule-set after the activation of the CSV-package soft-fork.
//
// Overview:
// - Pre soft-fork:
// - A transaction spending a CSV output validly should be rejected from the
// mempool, but accepted in a valid generated block including the
// transaction.
// - Post soft-fork:
// - See the cases exercised within the table driven tests towards the end
// of this test.
func TestBIP0068AndBIP0112Activation(t *testing.T) {
t.Parallel()
// We'd like the test proper evaluation and validation of the BIP 68
// (sequence locks) and BIP 112 rule-sets which add input-age based
// relative lock times.
btcdCfg := []string{"--rejectnonstd"}
r, err := rpctest.New(&chaincfg.SimNetParams, nil, btcdCfg, "")
if err != nil {
t.Fatal("unable to create primary harness: ", err)
}
if err := r.SetUp(true, 1); err != nil {
t.Fatalf("unable to setup test chain: %v", err)
}
defer r.TearDown()
assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdStarted)
harnessAddr, err := r.NewAddress()
if err != nil {
t.Fatalf("unable to obtain harness address: %v", err)
}
harnessScript, err := txscript.PayToAddrScript(harnessAddr)
if err != nil {
t.Fatalf("unable to generate pkScript: %v", err)
}
const (
outputAmt = btcutil.SatoshiPerBitcoin
relativeBlockLock = 10
)
sweepOutput := &wire.TxOut{
Value: outputAmt - 5000,
PkScript: harnessScript,
}
// As the soft-fork hasn't yet activated _any_ transaction version
// which uses the CSV opcode should be accepted. Since at this point,
// CSV doesn't actually exist, it's just a NOP.
for txVersion := int32(0); txVersion < 3; txVersion++ {
// Create a trivially spendable output with a CSV lock-time of
// 10 relative blocks.
redeemScript, testUTXO, tx, err := createCSVOutput(r, t, outputAmt,
relativeBlockLock, false)
if err != nil {
t.Fatalf("unable to create CSV encumbered output: %v", err)
}
// As the transaction is p2sh it should be accepted into the
// mempool and found within the next generated block.
if _, err := r.Node.SendRawTransaction(tx, true); err != nil {
t.Fatalf("unable to broadcast tx: %v", err)
}
blocks, err := r.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
txid := tx.TxHash()
assertTxInBlock(r, t, blocks[0], &txid)
// Generate a custom transaction which spends the CSV output.
sequenceNum := blockchain.LockTimeToSequence(false, 10)
spendingTx, err := spendCSVOutput(redeemScript, testUTXO,
sequenceNum, sweepOutput, txVersion)
if err != nil {
t.Fatalf("unable to spend csv output: %v", err)
}
// This transaction should be rejected from the mempool since
// CSV validation is already mempool policy pre-fork.
_, err = r.Node.SendRawTransaction(spendingTx, true)
if err == nil {
t.Fatalf("transaction should have been rejected, but was " +
"instead accepted")
}
// However, this transaction should be accepted in a custom
// generated block as CSV validation for scripts within blocks
// shouldn't yet be active.
txns := []*btcutil.Tx{btcutil.NewTx(spendingTx)}
block, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
if err != nil {
t.Fatalf("unable to submit block: %v", err)
}
txid = spendingTx.TxHash()
assertTxInBlock(r, t, block.Hash(), &txid)
}
// At this point, the block height should be 107: we started at height
// 101, then generated 2 blocks in each loop iteration above.
assertChainHeight(r, t, 107)
// With the height at 107 we need 200 blocks to be mined after the
// genesis target period, so we mine 192 blocks. This'll put us at
// height 299. The getblockchaininfo call checks the state for the
// block AFTER the current height.
numBlocks := (r.ActiveNet.MinerConfirmationWindow * 2) - 8
if _, err := r.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
assertChainHeight(r, t, 299)
assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdActive)
// Knowing the number of outputs needed for the tests below, create a
// fresh output for use within each of the test-cases below.
const relativeTimeLock = 512
const numTests = 8
type csvOutput struct {
RedeemScript []byte
Utxo *wire.OutPoint
Timelock int32
}
var spendableInputs [numTests]csvOutput
// Create three outputs which have a block-based sequence locks, and
// three outputs which use the above time based sequence lock.
for i := 0; i < numTests; i++ {
timeLock := relativeTimeLock
isSeconds := true
if i < 7 {
timeLock = relativeBlockLock
isSeconds = false
}
redeemScript, utxo, tx, err := createCSVOutput(r, t, outputAmt,
int32(timeLock), isSeconds)
if err != nil {
t.Fatalf("unable to create CSV output: %v", err)
}
if _, err := r.Node.SendRawTransaction(tx, true); err != nil {
t.Fatalf("unable to broadcast transaction: %v", err)
}
spendableInputs[i] = csvOutput{
RedeemScript: redeemScript,
Utxo: utxo,
Timelock: int32(timeLock),
}
}
// Mine a single block including all the transactions generated above.
if _, err := r.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Now mine 10 additional blocks giving the inputs generated above a
// age of 11. Space out each block 10 minutes after the previous block.
prevBlockHash, err := r.Node.GetBestBlockHash()
if err != nil {
t.Fatalf("unable to get prior block hash: %v", err)
}
prevBlock, err := r.Node.GetBlock(prevBlockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
for i := 0; i < relativeBlockLock; i++ {
timeStamp := prevBlock.Header.Timestamp.Add(time.Minute * 10)
b, err := r.GenerateAndSubmitBlock(nil, -1, timeStamp)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
prevBlock = b.MsgBlock()
}
// A helper function to create fully signed transactions in-line during
// the array initialization below.
var inputIndex uint32
makeTxCase := func(sequenceNum uint32, txVersion int32) *wire.MsgTx {
csvInput := spendableInputs[inputIndex]
tx, err := spendCSVOutput(csvInput.RedeemScript, csvInput.Utxo,
sequenceNum, sweepOutput, txVersion)
if err != nil {
t.Fatalf("unable to spend CSV output: %v", err)
}
inputIndex++
return tx
}
tests := [numTests]struct {
tx *wire.MsgTx
accept bool
}{
// A valid transaction with a single input a sequence number
// creating a 100 block relative time-lock. This transaction
// should be rejected as its version number is 1, and only tx
// of version > 2 will trigger the CSV behavior.
{
tx: makeTxCase(blockchain.LockTimeToSequence(false, 100), 1),
accept: false,
},
// A transaction of version 2 spending a single input. The
// input has a relative time-lock of 1 block, but the disable
// bit it set. The transaction should be rejected as a result.
{
tx: makeTxCase(
blockchain.LockTimeToSequence(false, 1)|wire.SequenceLockTimeDisabled,
2,
),
accept: false,
},
// A v2 transaction with a single input having a 9 block
// relative time lock. The referenced input is 11 blocks old,
// but the CSV output requires a 10 block relative lock-time.
// Therefore, the transaction should be rejected.
{
tx: makeTxCase(blockchain.LockTimeToSequence(false, 9), 2),
accept: false,
},
// A v2 transaction with a single input having a 10 block
// relative time lock. The referenced input is 11 blocks old so
// the transaction should be accepted.
{
tx: makeTxCase(blockchain.LockTimeToSequence(false, 10), 2),
accept: true,
},
// A v2 transaction with a single input having a 11 block
// relative time lock. The input referenced has an input age of
// 11 and the CSV op-code requires 10 blocks to have passed, so
// this transaction should be accepted.
{
tx: makeTxCase(blockchain.LockTimeToSequence(false, 11), 2),
accept: true,
},
// A v2 transaction whose input has a 1000 blck relative time
// lock. This should be rejected as the input's age is only 11
// blocks.
{
tx: makeTxCase(blockchain.LockTimeToSequence(false, 1000), 2),
accept: false,
},
// A v2 transaction with a single input having a 512,000 second
// relative time-lock. This transaction should be rejected as 6
// days worth of blocks haven't yet been mined. The referenced
// input doesn't have sufficient age.
{
tx: makeTxCase(blockchain.LockTimeToSequence(true, 512000), 2),
accept: false,
},
// A v2 transaction whose single input has a 512 second
// relative time-lock. This transaction should be accepted as
// finalized.
{
tx: makeTxCase(blockchain.LockTimeToSequence(true, 512), 2),
accept: true,
},
}
for i, test := range tests {
txid, err := r.Node.SendRawTransaction(test.tx, true)
switch {
// Test case passes, nothing further to report.
case test.accept && err == nil:
// Transaction should have been accepted but we have a non-nil
// error.
case test.accept && err != nil:
t.Fatalf("test #%d, transaction should be accepted, "+
"but was rejected: %v", i, err)
// Transaction should have been rejected, but it was accepted.
case !test.accept && err == nil:
t.Fatalf("test #%d, transaction should be rejected, "+
"but was accepted", i)
// Transaction was rejected as wanted, nothing more to do.
case !test.accept && err != nil:
}
// If the transaction should be rejected, manually mine a block
// with the non-final transaction. It should be rejected.
if !test.accept {
txns := []*btcutil.Tx{btcutil.NewTx(test.tx)}
_, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
if err == nil {
t.Fatalf("test #%d, invalid block accepted", i)
}
continue
}
// Generate a block, the transaction should be included within
// the newly mined block.
blockHashes, err := r.Node.Generate(1)
if err != nil {
t.Fatalf("unable to mine block: %v", err)
}
assertTxInBlock(r, t, blockHashes[0], txid)
}
}