lbcd/blockchain/chain_test.go
Dave Collins 1ae306021e
rpctest: Make subpackage of integration.
This makes the rpctest package a subpackage of the integration package
since its primary purpose is for integration testing.
2017-05-11 15:17:29 -05:00

490 lines
14 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain_test
import (
"bytes"
"testing"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// TestHaveBlock tests the HaveBlock API to ensure proper functionality.
func TestHaveBlock(t *testing.T) {
// Load up blocks such that there is a side chain.
// (genesis block) -> 1 -> 2 -> 3 -> 4
// \-> 3a
testFiles := []string{
"blk_0_to_4.dat.bz2",
"blk_3A.dat.bz2",
}
var blocks []*btcutil.Block
for _, file := range testFiles {
blockTmp, err := loadBlocks(file)
if err != nil {
t.Errorf("Error loading file: %v\n", err)
return
}
blocks = append(blocks, blockTmp...)
}
// Create a new database and chain instance to run tests against.
chain, teardownFunc, err := chainSetup("haveblock",
&chaincfg.MainNetParams)
if err != nil {
t.Errorf("Failed to setup chain instance: %v", err)
return
}
defer teardownFunc()
// Since we're not dealing with the real block chain, set the coinbase
// maturity to 1.
chain.TstSetCoinbaseMaturity(1)
for i := 1; i < len(blocks); i++ {
_, isOrphan, err := chain.ProcessBlock(blocks[i], blockchain.BFNone)
if err != nil {
t.Errorf("ProcessBlock fail on block %v: %v\n", i, err)
return
}
if isOrphan {
t.Errorf("ProcessBlock incorrectly returned block %v "+
"is an orphan\n", i)
return
}
}
// Insert an orphan block.
_, isOrphan, err := chain.ProcessBlock(btcutil.NewBlock(&Block100000),
blockchain.BFNone)
if err != nil {
t.Errorf("Unable to process block: %v", err)
return
}
if !isOrphan {
t.Errorf("ProcessBlock indicated block is an not orphan when " +
"it should be\n")
return
}
tests := []struct {
hash string
want bool
}{
// Genesis block should be present (in the main chain).
{hash: chaincfg.MainNetParams.GenesisHash.String(), want: true},
// Block 3a should be present (on a side chain).
{hash: "00000000474284d20067a4d33f6a02284e6ef70764a3a26d6a5b9df52ef663dd", want: true},
// Block 100000 should be present (as an orphan).
{hash: "000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506", want: true},
// Random hashes should not be available.
{hash: "123", want: false},
}
for i, test := range tests {
hash, err := chainhash.NewHashFromStr(test.hash)
if err != nil {
t.Errorf("NewHashFromStr: %v", err)
continue
}
result, err := chain.HaveBlock(hash)
if err != nil {
t.Errorf("HaveBlock #%d unexpected error: %v", i, err)
return
}
if result != test.want {
t.Errorf("HaveBlock #%d got %v want %v", i, result,
test.want)
continue
}
}
}
// TestCalcSequenceLock tests the LockTimeToSequence function, and the
// CalcSequenceLock method of a Chain instance. The tests exercise several
// combinations of inputs to the CalcSequenceLock function in order to ensure
// the returned SequenceLocks are correct for each test instance.
func TestCalcSequenceLock(t *testing.T) {
netParams := &chaincfg.SimNetParams
// Create a new database and chain instance to run tests against.
chain, teardownFunc, err := chainSetup("calcseqlock", netParams)
if err != nil {
t.Errorf("Failed to setup chain instance: %v", err)
return
}
defer teardownFunc()
// Since we're not dealing with the real block chain, set the coinbase
// maturity to 1.
chain.TstSetCoinbaseMaturity(1)
// Create a test mining address to use for the blocks we'll generate
// shortly below.
k := bytes.Repeat([]byte{1}, 32)
_, miningPub := btcec.PrivKeyFromBytes(btcec.S256(), k)
miningAddr, err := btcutil.NewAddressPubKey(miningPub.SerializeCompressed(),
netParams)
if err != nil {
t.Fatalf("unable to generate mining addr: %v", err)
}
// We'll keep track of the previous block for back pointers in blocks
// we generated, and also the generated blocks along with the MTP from
// their PoV to aide with our relative time lock calculations.
var prevBlock *btcutil.Block
var blocksWithMTP []struct {
block *btcutil.Block
mtp time.Time
}
// We need to activate CSV in order to test the processing logic, so
// manually craft the block version that's used to signal the soft-fork
// activation.
csvBit := netParams.Deployments[chaincfg.DeploymentCSV].BitNumber
blockVersion := int32(0x20000000 | (uint32(1) << csvBit))
// Generate enough blocks to activate CSV, collecting each of the
// blocks into a slice for later use.
numBlocksToActivate := (netParams.MinerConfirmationWindow * 3)
for i := uint32(0); i < numBlocksToActivate; i++ {
block, err := rpctest.CreateBlock(prevBlock, nil, blockVersion,
time.Time{}, miningAddr, netParams)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
mtp := chain.BestSnapshot().MedianTime
_, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone)
if err != nil {
t.Fatalf("ProcessBlock fail on block %v: %v\n", i, err)
}
if isOrphan {
t.Fatalf("ProcessBlock incorrectly returned block %v "+
"is an orphan\n", i)
}
blocksWithMTP = append(blocksWithMTP, struct {
block *btcutil.Block
mtp time.Time
}{
block: block,
mtp: mtp,
})
prevBlock = block
}
// Create a utxo view with all the utxos within the blocks created
// above.
utxoView := blockchain.NewUtxoViewpoint()
for blockHeight, blockWithMTP := range blocksWithMTP {
for _, tx := range blockWithMTP.block.Transactions() {
utxoView.AddTxOuts(tx, int32(blockHeight))
}
}
utxoView.SetBestHash(blocksWithMTP[len(blocksWithMTP)-1].block.Hash())
// The median time calculated from the PoV of the best block in our
// test chain. For unconfirmed inputs, this value will be used since
// the MTP will be calculated from the PoV of the yet-to-be-mined
// block.
nextMedianTime := int64(1401292712)
// We'll refer to this utxo within each input in the transactions
// created below. This utxo has an age of 4 blocks and was mined within
// block 297
targetTx := blocksWithMTP[len(blocksWithMTP)-4].block.Transactions()[0]
utxo := wire.OutPoint{
Hash: *targetTx.Hash(),
Index: 0,
}
// Obtain the median time past from the PoV of the input created above.
// The MTP for the input is the MTP from the PoV of the block *prior*
// to the one that included it.
medianTime := blocksWithMTP[len(blocksWithMTP)-5].mtp.Unix()
// Add an additional transaction which will serve as our unconfirmed
// output.
var fakeScript []byte
unConfTx := &wire.MsgTx{
TxOut: []*wire.TxOut{{
PkScript: fakeScript,
Value: 5,
}},
}
unConfUtxo := wire.OutPoint{
Hash: unConfTx.TxHash(),
Index: 0,
}
// Adding a utxo with a height of 0x7fffffff indicates that the output
// is currently unmined.
utxoView.AddTxOuts(btcutil.NewTx(unConfTx), 0x7fffffff)
tests := []struct {
tx *btcutil.Tx
view *blockchain.UtxoViewpoint
want *blockchain.SequenceLock
mempool bool
}{
// A transaction of version one should disable sequence locks
// as the new sequence number semantics only apply to
// transactions version 2 or higher.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 3),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: -1,
},
},
// A transaction with a single input, that a max int sequence
// number. This sequence number has the high bit set, so
// sequence locks should be disabled.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: wire.MaxTxInSequenceNum,
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: -1,
},
},
// A transaction with a single input whose lock time is
// expressed in seconds. However, the specified lock time is
// below the required floor for time based lock times since
// they have time granularity of 512 seconds. As a result, the
// seconds lock-time should be just before the median time of
// the targeted block.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 2),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: medianTime - 1,
BlockHeight: -1,
},
},
// A transaction with a single input whose lock time is
// expressed in seconds. The number of seconds should be 1023
// seconds after the median past time of the last block in the
// chain.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 1024),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: medianTime + 1023,
BlockHeight: -1,
},
},
// A transaction with multiple inputs. The first input has a
// sequence lock in blocks with a value of 4. The last input
// has a sequence number with a value of 5, but has the disable
// bit set. So the first lock should be selected as it's the
// target lock as its the furthest in the future lock that
// isn't disabled.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 2560),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 5) |
wire.SequenceLockTimeDisabled,
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 4),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: medianTime + (5 << wire.SequenceLockTimeGranularity) - 1,
BlockHeight: 299,
},
},
// Transaction has a single input spending the genesis block
// transaction. The input's sequence number is encodes a
// relative lock-time in blocks (3 blocks). The sequence lock
// should have a value of -1 for seconds, but a block height of
// 298 meaning it can be included at height 299.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 3),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: 298,
},
},
// A transaction with two inputs with lock times expressed in
// seconds. The selected sequence lock value for seconds should
// be the time further in the future.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 5120),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 2560),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: medianTime + (10 << wire.SequenceLockTimeGranularity) - 1,
BlockHeight: -1,
},
},
// A transaction with two inputs with lock times expressed in
// seconds. The selected sequence lock value for blocks should
// be the height further in the future. The converted absolute
// block height should be 302, meaning it can be included in
// block 303.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 1),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 7),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: 302,
},
},
// A transaction with multiple inputs. Two inputs are time
// based, and the other two are input maturity based. The lock
// lying further into the future for both inputs should be
// chosen.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 2560),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(true, 6656),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 3),
}, {
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 9),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: medianTime + (13 << wire.SequenceLockTimeGranularity) - 1,
BlockHeight: 304,
},
},
// A transaction with a single unconfirmed input. As the input
// is confirmed, the height of the input should be interpreted
// as the height of the *next* block. The current block height
// is 300, so the lock time should be calculated using height
// 301 as a base. A 2 block relative lock means the transaction
// can be included after block 302, so in 303.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: unConfUtxo,
Sequence: blockchain.LockTimeToSequence(false, 2),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: 302,
},
},
// A transaction with a single unconfirmed input. The input has
// a time based lock, so the lock time should be based off the
// MTP of the *next* block.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: unConfUtxo,
Sequence: blockchain.LockTimeToSequence(true, 1024),
}},
}),
view: utxoView,
want: &blockchain.SequenceLock{
Seconds: nextMedianTime + 1023,
BlockHeight: -1,
},
},
}
t.Logf("Running %v SequenceLock tests", len(tests))
for i, test := range tests {
seqLock, err := chain.CalcSequenceLock(test.tx, test.view, test.mempool)
if err != nil {
t.Fatalf("test #%d, unable to calc sequence lock: %v", i, err)
}
if seqLock.Seconds != test.want.Seconds {
t.Fatalf("test #%d got %v seconds want %v seconds",
i, seqLock.Seconds, test.want.Seconds)
}
if seqLock.BlockHeight != test.want.BlockHeight {
t.Fatalf("test #%d got height of %v want height of %v ",
i, seqLock.BlockHeight, test.want.BlockHeight)
}
}
}