lbcd/blockchain/upgrade.go
Roy Lee 28a5e6fc65 [lbry] rename btcd to lbcd
Co-authored-by: Brannon King <countprimes@gmail.com>
2021-12-14 14:00:59 -08:00

604 lines
20 KiB
Go

// Copyright (c) 2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"bytes"
"container/list"
"errors"
"fmt"
"time"
"github.com/lbryio/lbcd/chaincfg/chainhash"
"github.com/lbryio/lbcd/database"
"github.com/lbryio/lbcd/wire"
)
const (
// blockHdrOffset defines the offsets into a v1 block index row for the
// block header.
//
// The serialized block index row format is:
// <blocklocation><blockheader>
blockHdrOffset = 12
)
// errInterruptRequested indicates that an operation was cancelled due
// to a user-requested interrupt.
var errInterruptRequested = errors.New("interrupt requested")
// interruptRequested returns true when the provided channel has been closed.
// This simplifies early shutdown slightly since the caller can just use an if
// statement instead of a select.
func interruptRequested(interrupted <-chan struct{}) bool {
select {
case <-interrupted:
return true
default:
}
return false
}
// blockChainContext represents a particular block's placement in the block
// chain. This is used by the block index migration to track block metadata that
// will be written to disk.
type blockChainContext struct {
parent *chainhash.Hash
children []*chainhash.Hash
height int32
mainChain bool
}
// migrateBlockIndex migrates all block entries from the v1 block index bucket
// to the v2 bucket. The v1 bucket stores all block entries keyed by block hash,
// whereas the v2 bucket stores the exact same values, but keyed instead by
// block height + hash.
func migrateBlockIndex(db database.DB) error {
// Hardcoded bucket names so updates to the global values do not affect
// old upgrades.
v1BucketName := []byte("ffldb-blockidx")
v2BucketName := []byte("blockheaderidx")
err := db.Update(func(dbTx database.Tx) error {
v1BlockIdxBucket := dbTx.Metadata().Bucket(v1BucketName)
if v1BlockIdxBucket == nil {
return fmt.Errorf("Bucket %s does not exist", v1BucketName)
}
log.Info("Re-indexing block information in the database. This might take a while...")
v2BlockIdxBucket, err :=
dbTx.Metadata().CreateBucketIfNotExists(v2BucketName)
if err != nil {
return err
}
// Get tip of the main chain.
serializedData := dbTx.Metadata().Get(chainStateKeyName)
state, err := deserializeBestChainState(serializedData)
if err != nil {
return err
}
tip := &state.hash
// Scan the old block index bucket and construct a mapping of each block
// to parent block and all child blocks.
blocksMap, err := readBlockTree(v1BlockIdxBucket)
if err != nil {
return err
}
// Use the block graph to calculate the height of each block.
err = determineBlockHeights(blocksMap)
if err != nil {
return err
}
// Find blocks on the main chain with the block graph and current tip.
determineMainChainBlocks(blocksMap, tip)
// Now that we have heights for all blocks, scan the old block index
// bucket and insert all rows into the new one.
return v1BlockIdxBucket.ForEach(func(hashBytes, blockRow []byte) error {
endOffset := blockHdrOffset + blockHdrSize
headerBytes := blockRow[blockHdrOffset:endOffset:endOffset]
var hash chainhash.Hash
copy(hash[:], hashBytes[0:chainhash.HashSize])
chainContext := blocksMap[hash]
if chainContext.height == -1 {
return fmt.Errorf("Unable to calculate chain height for "+
"stored block %s", hash)
}
// Mark blocks as valid if they are part of the main chain.
status := statusDataStored
if chainContext.mainChain {
status |= statusValid
}
// Write header to v2 bucket
value := make([]byte, blockHdrSize+1)
copy(value[0:blockHdrSize], headerBytes)
value[blockHdrSize] = byte(status)
key := blockIndexKey(&hash, uint32(chainContext.height))
err := v2BlockIdxBucket.Put(key, value)
if err != nil {
return err
}
// Delete header from v1 bucket
truncatedRow := blockRow[0:blockHdrOffset:blockHdrOffset]
return v1BlockIdxBucket.Put(hashBytes, truncatedRow)
})
})
if err != nil {
return err
}
log.Infof("Block database migration complete")
return nil
}
// readBlockTree reads the old block index bucket and constructs a mapping of
// each block to its parent block and all child blocks. This mapping represents
// the full tree of blocks. This function does not populate the height or
// mainChain fields of the returned blockChainContext values.
func readBlockTree(v1BlockIdxBucket database.Bucket) (map[chainhash.Hash]*blockChainContext, error) {
blocksMap := make(map[chainhash.Hash]*blockChainContext)
err := v1BlockIdxBucket.ForEach(func(_, blockRow []byte) error {
var header wire.BlockHeader
endOffset := blockHdrOffset + blockHdrSize
headerBytes := blockRow[blockHdrOffset:endOffset:endOffset]
err := header.Deserialize(bytes.NewReader(headerBytes))
if err != nil {
return err
}
blockHash := header.BlockHash()
prevHash := header.PrevBlock
if blocksMap[blockHash] == nil {
blocksMap[blockHash] = &blockChainContext{height: -1}
}
if blocksMap[prevHash] == nil {
blocksMap[prevHash] = &blockChainContext{height: -1}
}
blocksMap[blockHash].parent = &prevHash
blocksMap[prevHash].children =
append(blocksMap[prevHash].children, &blockHash)
return nil
})
return blocksMap, err
}
// determineBlockHeights takes a map of block hashes to a slice of child hashes
// and uses it to compute the height for each block. The function assigns a
// height of 0 to the genesis hash and explores the tree of blocks
// breadth-first, assigning a height to every block with a path back to the
// genesis block. This function modifies the height field on the blocksMap
// entries.
func determineBlockHeights(blocksMap map[chainhash.Hash]*blockChainContext) error {
queue := list.New()
// The genesis block is included in blocksMap as a child of the zero hash
// because that is the value of the PrevBlock field in the genesis header.
preGenesisContext, exists := blocksMap[zeroHash]
if !exists || len(preGenesisContext.children) == 0 {
return fmt.Errorf("Unable to find genesis block")
}
for _, genesisHash := range preGenesisContext.children {
blocksMap[*genesisHash].height = 0
queue.PushBack(genesisHash)
}
for e := queue.Front(); e != nil; e = queue.Front() {
queue.Remove(e)
hash := e.Value.(*chainhash.Hash)
height := blocksMap[*hash].height
// For each block with this one as a parent, assign it a height and
// push to queue for future processing.
for _, childHash := range blocksMap[*hash].children {
blocksMap[*childHash].height = height + 1
queue.PushBack(childHash)
}
}
return nil
}
// determineMainChainBlocks traverses the block graph down from the tip to
// determine which block hashes that are part of the main chain. This function
// modifies the mainChain field on the blocksMap entries.
func determineMainChainBlocks(blocksMap map[chainhash.Hash]*blockChainContext, tip *chainhash.Hash) {
for nextHash := tip; *nextHash != zeroHash; nextHash = blocksMap[*nextHash].parent {
blocksMap[*nextHash].mainChain = true
}
}
// deserializeUtxoEntryV0 decodes a utxo entry from the passed serialized byte
// slice according to the legacy version 0 format into a map of utxos keyed by
// the output index within the transaction. The map is necessary because the
// previous format encoded all unspent outputs for a transaction using a single
// entry, whereas the new format encodes each unspent output individually.
//
// The legacy format is as follows:
//
// <version><height><header code><unspentness bitmap>[<compressed txouts>,...]
//
// Field Type Size
// version VLQ variable
// block height VLQ variable
// header code VLQ variable
// unspentness bitmap []byte variable
// compressed txouts
// compressed amount VLQ variable
// compressed script []byte variable
//
// The serialized header code format is:
// bit 0 - containing transaction is a coinbase
// bit 1 - output zero is unspent
// bit 2 - output one is unspent
// bits 3-x - number of bytes in unspentness bitmap. When both bits 1 and 2
// are unset, it encodes N-1 since there must be at least one unspent
// output.
//
// The rationale for the header code scheme is as follows:
// - Transactions which only pay to a single output and a change output are
// extremely common, thus an extra byte for the unspentness bitmap can be
// avoided for them by encoding those two outputs in the low order bits.
// - Given it is encoded as a VLQ which can encode values up to 127 with a
// single byte, that leaves 4 bits to represent the number of bytes in the
// unspentness bitmap while still only consuming a single byte for the
// header code. In other words, an unspentness bitmap with up to 120
// transaction outputs can be encoded with a single-byte header code.
// This covers the vast majority of transactions.
// - Encoding N-1 bytes when both bits 1 and 2 are unset allows an additional
// 8 outpoints to be encoded before causing the header code to require an
// additional byte.
//
// Example 1:
// From tx in main blockchain:
// Blk 1, 0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098
//
// 010103320496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52
// <><><><------------------------------------------------------------------>
// | | \--------\ |
// | height | compressed txout 0
// version header code
//
// - version: 1
// - height: 1
// - header code: 0x03 (coinbase, output zero unspent, 0 bytes of unspentness)
// - unspentness: Nothing since it is zero bytes
// - compressed txout 0:
// - 0x32: VLQ-encoded compressed amount for 5000000000 (50 BTC)
// - 0x04: special script type pay-to-pubkey
// - 0x96...52: x-coordinate of the pubkey
//
// Example 2:
// From tx in main blockchain:
// Blk 113931, 4a16969aa4764dd7507fc1de7f0baa4850a246de90c45e59a3207f9a26b5036f
//
// 0185f90b0a011200e2ccd6ec7c6e2e581349c77e067385fa8236bf8a800900b8025be1b3efc63b0ad48e7f9f10e87544528d58
// <><----><><><------------------------------------------><-------------------------------------------->
// | | | \-------------------\ | |
// version | \--------\ unspentness | compressed txout 2
// height header code compressed txout 0
//
// - version: 1
// - height: 113931
// - header code: 0x0a (output zero unspent, 1 byte in unspentness bitmap)
// - unspentness: [0x01] (bit 0 is set, so output 0+2 = 2 is unspent)
// NOTE: It's +2 since the first two outputs are encoded in the header code
// - compressed txout 0:
// - 0x12: VLQ-encoded compressed amount for 20000000 (0.2 BTC)
// - 0x00: special script type pay-to-pubkey-hash
// - 0xe2...8a: pubkey hash
// - compressed txout 2:
// - 0x8009: VLQ-encoded compressed amount for 15000000 (0.15 BTC)
// - 0x00: special script type pay-to-pubkey-hash
// - 0xb8...58: pubkey hash
//
// Example 3:
// From tx in main blockchain:
// Blk 338156, 1b02d1c8cfef60a189017b9a420c682cf4a0028175f2f563209e4ff61c8c3620
//
// 0193d06c100000108ba5b9e763011dd46a006572d820e448e12d2bbb38640bc718e6
// <><----><><----><-------------------------------------------------->
// | | | \-----------------\ |
// version | \--------\ unspentness |
// height header code compressed txout 22
//
// - version: 1
// - height: 338156
// - header code: 0x10 (2+1 = 3 bytes in unspentness bitmap)
// NOTE: It's +1 since neither bit 1 nor 2 are set, so N-1 is encoded.
// - unspentness: [0x00 0x00 0x10] (bit 20 is set, so output 20+2 = 22 is unspent)
// NOTE: It's +2 since the first two outputs are encoded in the header code
// - compressed txout 22:
// - 0x8ba5b9e763: VLQ-encoded compressed amount for 366875659 (3.66875659 BTC)
// - 0x01: special script type pay-to-script-hash
// - 0x1d...e6: script hash
func deserializeUtxoEntryV0(serialized []byte) (map[uint32]*UtxoEntry, error) {
// Deserialize the version.
//
// NOTE: Ignore version since it is no longer used in the new format.
_, bytesRead := deserializeVLQ(serialized)
offset := bytesRead
if offset >= len(serialized) {
return nil, errDeserialize("unexpected end of data after version")
}
// Deserialize the block height.
blockHeight, bytesRead := deserializeVLQ(serialized[offset:])
offset += bytesRead
if offset >= len(serialized) {
return nil, errDeserialize("unexpected end of data after height")
}
// Deserialize the header code.
code, bytesRead := deserializeVLQ(serialized[offset:])
offset += bytesRead
if offset >= len(serialized) {
return nil, errDeserialize("unexpected end of data after header")
}
// Decode the header code.
//
// Bit 0 indicates whether the containing transaction is a coinbase.
// Bit 1 indicates output 0 is unspent.
// Bit 2 indicates output 1 is unspent.
// Bits 3-x encodes the number of non-zero unspentness bitmap bytes that
// follow. When both output 0 and 1 are spent, it encodes N-1.
isCoinBase := code&0x01 != 0
output0Unspent := code&0x02 != 0
output1Unspent := code&0x04 != 0
numBitmapBytes := code >> 3
if !output0Unspent && !output1Unspent {
numBitmapBytes++
}
// Ensure there are enough bytes left to deserialize the unspentness
// bitmap.
if uint64(len(serialized[offset:])) < numBitmapBytes {
return nil, errDeserialize("unexpected end of data for " +
"unspentness bitmap")
}
// Add sparse output for unspent outputs 0 and 1 as needed based on the
// details provided by the header code.
var outputIndexes []uint32
if output0Unspent {
outputIndexes = append(outputIndexes, 0)
}
if output1Unspent {
outputIndexes = append(outputIndexes, 1)
}
// Decode the unspentness bitmap adding a sparse output for each unspent
// output.
for i := uint32(0); i < uint32(numBitmapBytes); i++ {
unspentBits := serialized[offset]
for j := uint32(0); j < 8; j++ {
if unspentBits&0x01 != 0 {
// The first 2 outputs are encoded via the
// header code, so adjust the output number
// accordingly.
outputNum := 2 + i*8 + j
outputIndexes = append(outputIndexes, outputNum)
}
unspentBits >>= 1
}
offset++
}
// Map to hold all of the converted outputs.
entries := make(map[uint32]*UtxoEntry)
// All entries will need to potentially be marked as a coinbase.
var packedFlags txoFlags
if isCoinBase {
packedFlags |= tfCoinBase
}
// Decode and add all of the utxos.
for i, outputIndex := range outputIndexes {
// Decode the next utxo.
amount, pkScript, bytesRead, err := decodeCompressedTxOut(
serialized[offset:])
if err != nil {
return nil, errDeserialize(fmt.Sprintf("unable to "+
"decode utxo at index %d: %v", i, err))
}
offset += bytesRead
// Create a new utxo entry with the details deserialized above.
entries[outputIndex] = &UtxoEntry{
amount: int64(amount),
pkScript: pkScript,
blockHeight: int32(blockHeight),
packedFlags: packedFlags,
}
}
return entries, nil
}
// upgradeUtxoSetToV2 migrates the utxo set entries from version 1 to 2 in
// batches. It is guaranteed to updated if this returns without failure.
func upgradeUtxoSetToV2(db database.DB, interrupt <-chan struct{}) error {
// Hardcoded bucket names so updates to the global values do not affect
// old upgrades.
var (
v1BucketName = []byte("utxoset")
v2BucketName = []byte("utxosetv2")
)
log.Infof("Upgrading utxo set to v2. This will take a while...")
start := time.Now()
// Create the new utxo set bucket as needed.
err := db.Update(func(dbTx database.Tx) error {
_, err := dbTx.Metadata().CreateBucketIfNotExists(v2BucketName)
return err
})
if err != nil {
return err
}
// doBatch contains the primary logic for upgrading the utxo set from
// version 1 to 2 in batches. This is done because the utxo set can be
// huge and thus attempting to migrate in a single database transaction
// would result in massive memory usage and could potentially crash on
// many systems due to ulimits.
//
// It returns the number of utxos processed.
const maxUtxos = 200000
doBatch := func(dbTx database.Tx) (uint32, error) {
v1Bucket := dbTx.Metadata().Bucket(v1BucketName)
v2Bucket := dbTx.Metadata().Bucket(v2BucketName)
v1Cursor := v1Bucket.Cursor()
// Migrate utxos so long as the max number of utxos for this
// batch has not been exceeded.
var numUtxos uint32
for ok := v1Cursor.First(); ok && numUtxos < maxUtxos; ok =
v1Cursor.Next() {
// Old key was the transaction hash.
oldKey := v1Cursor.Key()
var txHash chainhash.Hash
copy(txHash[:], oldKey)
// Deserialize the old entry which included all utxos
// for the given transaction.
utxos, err := deserializeUtxoEntryV0(v1Cursor.Value())
if err != nil {
return 0, err
}
// Add an entry for each utxo into the new bucket using
// the new format.
for txOutIdx, utxo := range utxos {
reserialized, err := serializeUtxoEntry(utxo)
if err != nil {
return 0, err
}
key := outpointKey(wire.OutPoint{
Hash: txHash,
Index: txOutIdx,
})
err = v2Bucket.Put(*key, reserialized)
// NOTE: The key is intentionally not recycled
// here since the database interface contract
// prohibits modifications. It will be garbage
// collected normally when the database is done
// with it.
if err != nil {
return 0, err
}
}
// Remove old entry.
err = v1Bucket.Delete(oldKey)
if err != nil {
return 0, err
}
numUtxos += uint32(len(utxos))
if interruptRequested(interrupt) {
// No error here so the database transaction
// is not cancelled and therefore outstanding
// work is written to disk.
break
}
}
return numUtxos, nil
}
// Migrate all entries in batches for the reasons mentioned above.
var totalUtxos uint64
for {
var numUtxos uint32
err := db.Update(func(dbTx database.Tx) error {
var err error
numUtxos, err = doBatch(dbTx)
return err
})
if err != nil {
return err
}
if interruptRequested(interrupt) {
return errInterruptRequested
}
if numUtxos == 0 {
break
}
totalUtxos += uint64(numUtxos)
log.Infof("Migrated %d utxos (%d total)", numUtxos, totalUtxos)
}
// Remove the old bucket and update the utxo set version once it has
// been fully migrated.
err = db.Update(func(dbTx database.Tx) error {
err := dbTx.Metadata().DeleteBucket(v1BucketName)
if err != nil {
return err
}
return dbPutVersion(dbTx, utxoSetVersionKeyName, 2)
})
if err != nil {
return err
}
seconds := int64(time.Since(start) / time.Second)
log.Infof("Done upgrading utxo set. Total utxos: %d in %d seconds",
totalUtxos, seconds)
return nil
}
// maybeUpgradeDbBuckets checks the database version of the buckets used by this
// package and performs any needed upgrades to bring them to the latest version.
//
// All buckets used by this package are guaranteed to be the latest version if
// this function returns without error.
func (b *BlockChain) maybeUpgradeDbBuckets(interrupt <-chan struct{}) error {
// Load or create bucket versions as needed.
var utxoSetVersion uint32
err := b.db.Update(func(dbTx database.Tx) error {
// Load the utxo set version from the database or create it and
// initialize it to version 1 if it doesn't exist.
var err error
utxoSetVersion, err = dbFetchOrCreateVersion(dbTx,
utxoSetVersionKeyName, 1)
return err
})
if err != nil {
return err
}
// Update the utxo set to v2 if needed.
if utxoSetVersion < 2 {
if err := upgradeUtxoSetToV2(b.db, interrupt); err != nil {
return err
}
}
return nil
}