296fa0a5a0
This reworks the block index code such that it loads all of the headers in the main chain at startup and constructs the full block index accordingly. Since the full index from the current best tip all the way back to the genesis block is now guaranteed to be in memory, this also removes all code related to dynamically loading the nodes and updates some of the logic to take advantage of the fact traversing the block index can longer potentially fail. There are also more optimizations and simplifications that can be made in the future as a result of this. Due to removing all of the extra overhead of tracking the dynamic state, and ensuring the block node structs are aligned to eliminate extra padding, the end result of a fully populated block index now takes quite a bit less memory than the previous dynamically loaded version. The main downside is that it now takes a while to start whereas it was nearly instant before, however, it is much better to provide more efficient runtime operation since that is its ultimate purpose and the benefits far outweigh this downside. Some benefits are: - Since every block node is in memory, the recent code which reconstructs headers from block nodes means that all headers can always be served from memory which is important since the majority of the network has moved to header-based semantics - Several of the error paths can be removed since they are no longer necessary - It is no longer expensive to calculate CSV sequence locks or median times of blocks way in the past - It will be possible to create much more efficient iteration and simplified views of the overall index - The entire threshold state database cache can be removed since it is cheap to construct it from the full block index as needed An overview of the logic changes are as follows: - Move AncestorNode from blockIndex to blockNode and greatly simplify since it no longer has to deal with the possibility of dynamically loading nodes and related failures - Rename RelativeNode to RelativeAncestor, move to blockNode, and redefine in terms of AncestorNode - Move CalcPastMedianTime from blockIndex to blockNode and remove no longer necessary test for nil - Change calcSequenceLock to use Ancestor instead of RelativeAncestor since it reads more clearly
256 lines
8.9 KiB
Go
256 lines
8.9 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package blockchain
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/database"
|
|
"github.com/btcsuite/btcutil"
|
|
)
|
|
|
|
// BehaviorFlags is a bitmask defining tweaks to the normal behavior when
|
|
// performing chain processing and consensus rules checks.
|
|
type BehaviorFlags uint32
|
|
|
|
const (
|
|
// BFFastAdd may be set to indicate that several checks can be avoided
|
|
// for the block since it is already known to fit into the chain due to
|
|
// already proving it correct links into the chain up to a known
|
|
// checkpoint. This is primarily used for headers-first mode.
|
|
BFFastAdd BehaviorFlags = 1 << iota
|
|
|
|
// BFNoPoWCheck may be set to indicate the proof of work check which
|
|
// ensures a block hashes to a value less than the required target will
|
|
// not be performed.
|
|
BFNoPoWCheck
|
|
|
|
// BFDryRun may be set to indicate the block should not modify the chain
|
|
// or memory chain index. This is useful to test that a block is valid
|
|
// without modifying the current state.
|
|
BFDryRun
|
|
|
|
// BFNone is a convenience value to specifically indicate no flags.
|
|
BFNone BehaviorFlags = 0
|
|
)
|
|
|
|
// blockExists determines whether a block with the given hash exists either in
|
|
// the main chain or any side chains.
|
|
//
|
|
// This function is safe for concurrent access.
|
|
func (b *BlockChain) blockExists(hash *chainhash.Hash) (bool, error) {
|
|
// Check block index first (could be main chain or side chain blocks).
|
|
if b.index.HaveBlock(hash) {
|
|
return true, nil
|
|
}
|
|
|
|
// Check in the database.
|
|
var exists bool
|
|
err := b.db.View(func(dbTx database.Tx) error {
|
|
var err error
|
|
exists, err = dbTx.HasBlock(hash)
|
|
if err != nil || !exists {
|
|
return err
|
|
}
|
|
|
|
// Ignore side chain blocks in the database. This is necessary
|
|
// because there is not currently any record of the associated
|
|
// block index data such as its block height, so it's not yet
|
|
// possible to efficiently load the block and do anything useful
|
|
// with it.
|
|
//
|
|
// Ultimately the entire block index should be serialized
|
|
// instead of only the current main chain so it can be consulted
|
|
// directly.
|
|
_, err = dbFetchHeightByHash(dbTx, hash)
|
|
if isNotInMainChainErr(err) {
|
|
exists = false
|
|
return nil
|
|
}
|
|
return err
|
|
})
|
|
return exists, err
|
|
}
|
|
|
|
// processOrphans determines if there are any orphans which depend on the passed
|
|
// block hash (they are no longer orphans if true) and potentially accepts them.
|
|
// It repeats the process for the newly accepted blocks (to detect further
|
|
// orphans which may no longer be orphans) until there are no more.
|
|
//
|
|
// The flags do not modify the behavior of this function directly, however they
|
|
// are needed to pass along to maybeAcceptBlock.
|
|
//
|
|
// This function MUST be called with the chain state lock held (for writes).
|
|
func (b *BlockChain) processOrphans(hash *chainhash.Hash, flags BehaviorFlags) error {
|
|
// Start with processing at least the passed hash. Leave a little room
|
|
// for additional orphan blocks that need to be processed without
|
|
// needing to grow the array in the common case.
|
|
processHashes := make([]*chainhash.Hash, 0, 10)
|
|
processHashes = append(processHashes, hash)
|
|
for len(processHashes) > 0 {
|
|
// Pop the first hash to process from the slice.
|
|
processHash := processHashes[0]
|
|
processHashes[0] = nil // Prevent GC leak.
|
|
processHashes = processHashes[1:]
|
|
|
|
// Look up all orphans that are parented by the block we just
|
|
// accepted. This will typically only be one, but it could
|
|
// be multiple if multiple blocks are mined and broadcast
|
|
// around the same time. The one with the most proof of work
|
|
// will eventually win out. An indexing for loop is
|
|
// intentionally used over a range here as range does not
|
|
// reevaluate the slice on each iteration nor does it adjust the
|
|
// index for the modified slice.
|
|
for i := 0; i < len(b.prevOrphans[*processHash]); i++ {
|
|
orphan := b.prevOrphans[*processHash][i]
|
|
if orphan == nil {
|
|
log.Warnf("Found a nil entry at index %d in the "+
|
|
"orphan dependency list for block %v", i,
|
|
processHash)
|
|
continue
|
|
}
|
|
|
|
// Remove the orphan from the orphan pool.
|
|
orphanHash := orphan.block.Hash()
|
|
b.removeOrphanBlock(orphan)
|
|
i--
|
|
|
|
// Potentially accept the block into the block chain.
|
|
_, err := b.maybeAcceptBlock(orphan.block, flags)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Add this block to the list of blocks to process so
|
|
// any orphan blocks that depend on this block are
|
|
// handled too.
|
|
processHashes = append(processHashes, orphanHash)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ProcessBlock is the main workhorse for handling insertion of new blocks into
|
|
// the block chain. It includes functionality such as rejecting duplicate
|
|
// blocks, ensuring blocks follow all rules, orphan handling, and insertion into
|
|
// the block chain along with best chain selection and reorganization.
|
|
//
|
|
// When no errors occurred during processing, the first return value indicates
|
|
// whether or not the block is on the main chain and the second indicates
|
|
// whether or not the block is an orphan.
|
|
//
|
|
// This function is safe for concurrent access.
|
|
func (b *BlockChain) ProcessBlock(block *btcutil.Block, flags BehaviorFlags) (bool, bool, error) {
|
|
b.chainLock.Lock()
|
|
defer b.chainLock.Unlock()
|
|
|
|
fastAdd := flags&BFFastAdd == BFFastAdd
|
|
dryRun := flags&BFDryRun == BFDryRun
|
|
|
|
blockHash := block.Hash()
|
|
log.Tracef("Processing block %v", blockHash)
|
|
|
|
// The block must not already exist in the main chain or side chains.
|
|
exists, err := b.blockExists(blockHash)
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
if exists {
|
|
str := fmt.Sprintf("already have block %v", blockHash)
|
|
return false, false, ruleError(ErrDuplicateBlock, str)
|
|
}
|
|
|
|
// The block must not already exist as an orphan.
|
|
if _, exists := b.orphans[*blockHash]; exists {
|
|
str := fmt.Sprintf("already have block (orphan) %v", blockHash)
|
|
return false, false, ruleError(ErrDuplicateBlock, str)
|
|
}
|
|
|
|
// Perform preliminary sanity checks on the block and its transactions.
|
|
err = checkBlockSanity(block, b.chainParams.PowLimit, b.timeSource, flags)
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
|
|
// Find the previous checkpoint and perform some additional checks based
|
|
// on the checkpoint. This provides a few nice properties such as
|
|
// preventing old side chain blocks before the last checkpoint,
|
|
// rejecting easy to mine, but otherwise bogus, blocks that could be
|
|
// used to eat memory, and ensuring expected (versus claimed) proof of
|
|
// work requirements since the previous checkpoint are met.
|
|
blockHeader := &block.MsgBlock().Header
|
|
checkpointBlock, err := b.findPreviousCheckpoint()
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
if checkpointBlock != nil {
|
|
// Ensure the block timestamp is after the checkpoint timestamp.
|
|
checkpointHeader := &checkpointBlock.MsgBlock().Header
|
|
checkpointTime := checkpointHeader.Timestamp
|
|
if blockHeader.Timestamp.Before(checkpointTime) {
|
|
str := fmt.Sprintf("block %v has timestamp %v before "+
|
|
"last checkpoint timestamp %v", blockHash,
|
|
blockHeader.Timestamp, checkpointTime)
|
|
return false, false, ruleError(ErrCheckpointTimeTooOld, str)
|
|
}
|
|
if !fastAdd {
|
|
// Even though the checks prior to now have already ensured the
|
|
// proof of work exceeds the claimed amount, the claimed amount
|
|
// is a field in the block header which could be forged. This
|
|
// check ensures the proof of work is at least the minimum
|
|
// expected based on elapsed time since the last checkpoint and
|
|
// maximum adjustment allowed by the retarget rules.
|
|
duration := blockHeader.Timestamp.Sub(checkpointTime)
|
|
requiredTarget := CompactToBig(b.calcEasiestDifficulty(
|
|
checkpointHeader.Bits, duration))
|
|
currentTarget := CompactToBig(blockHeader.Bits)
|
|
if currentTarget.Cmp(requiredTarget) > 0 {
|
|
str := fmt.Sprintf("block target difficulty of %064x "+
|
|
"is too low when compared to the previous "+
|
|
"checkpoint", currentTarget)
|
|
return false, false, ruleError(ErrDifficultyTooLow, str)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle orphan blocks.
|
|
prevHash := &blockHeader.PrevBlock
|
|
prevHashExists, err := b.blockExists(prevHash)
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
if !prevHashExists {
|
|
if !dryRun {
|
|
log.Infof("Adding orphan block %v with parent %v",
|
|
blockHash, prevHash)
|
|
b.addOrphanBlock(block)
|
|
}
|
|
|
|
return false, true, nil
|
|
}
|
|
|
|
// The block has passed all context independent checks and appears sane
|
|
// enough to potentially accept it into the block chain.
|
|
isMainChain, err := b.maybeAcceptBlock(block, flags)
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
|
|
// Don't process any orphans or log when the dry run flag is set.
|
|
if !dryRun {
|
|
// Accept any orphan blocks that depend on this block (they are
|
|
// no longer orphans) and repeat for those accepted blocks until
|
|
// there are no more.
|
|
err := b.processOrphans(blockHash, flags)
|
|
if err != nil {
|
|
return false, false, err
|
|
}
|
|
|
|
log.Debugf("Accepted block %v", blockHash)
|
|
}
|
|
|
|
return isMainChain, false, nil
|
|
}
|