lbcd/mempool/mempool.go

1219 lines
42 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mempool
import (
"container/list"
"fmt"
"math"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/blockchain/indexers"
"github.com/btcsuite/btcd/btcjson"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/mining"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
// DefaultBlockPrioritySize is the default size in bytes for high-
// priority / low-fee transactions. It is used to help determine which
// are allowed into the mempool and consequently affects their relay and
// inclusion when generating block templates.
DefaultBlockPrioritySize = 50000
// orphanTTL is the maximum amount of time an orphan is allowed to
// stay in the orphan pool before it expires and is evicted during the
// next scan.
orphanTTL = time.Minute * 15
// orphanExpireScanInterval is the minimum amount of time in between
// scans of the orphan pool to evict expired transactions.
orphanExpireScanInterval = time.Minute * 5
)
// Tag represents an identifier to use for tagging orphan transactions. The
// caller may choose any scheme it desires, however it is common to use peer IDs
// so that orphans can be identified by which peer first relayed them.
type Tag uint64
// Config is a descriptor containing the memory pool configuration.
type Config struct {
// Policy defines the various mempool configuration options related
// to policy.
Policy Policy
// ChainParams identifies which chain parameters the txpool is
// associated with.
ChainParams *chaincfg.Params
// FetchUtxoView defines the function to use to fetch unspent
// transaction output information.
FetchUtxoView func(*btcutil.Tx) (*blockchain.UtxoViewpoint, error)
// BestHeight defines the function to use to access the block height of
// the current best chain.
BestHeight func() int32
// MedianTimePast defines the function to use in order to access the
// median time past calculated from the point-of-view of the current
// chain tip within the best chain.
MedianTimePast func() time.Time
// CalcSequenceLock defines the function to use in order to generate
// the current sequence lock for the given transaction using the passed
// utxo view.
CalcSequenceLock func(*btcutil.Tx, *blockchain.UtxoViewpoint) (*blockchain.SequenceLock, error)
// IsDeploymentActive returns true if the target deploymentID is
// active, and false otherwise. The mempool uses this function to gauge
// if transactions using new to be soft-forked rules should be allowed
// into the mempool or not.
IsDeploymentActive func(deploymentID uint32) (bool, error)
// SigCache defines a signature cache to use.
SigCache *txscript.SigCache
// HashCache defines the transaction hash mid-state cache to use.
HashCache *txscript.HashCache
// AddrIndex defines the optional address index instance to use for
// indexing the unconfirmed transactions in the memory pool.
// This can be nil if the address index is not enabled.
AddrIndex *indexers.AddrIndex
// FeeEstimatator provides a feeEstimator. If it is not nil, the mempool
// records all new transactions it observes into the feeEstimator.
FeeEstimator *FeeEstimator
}
// Policy houses the policy (configuration parameters) which is used to
// control the mempool.
type Policy struct {
// MaxTxVersion is the transaction version that the mempool should
// accept. All transactions above this version are rejected as
// non-standard.
MaxTxVersion int32
// DisableRelayPriority defines whether to relay free or low-fee
// transactions that do not have enough priority to be relayed.
DisableRelayPriority bool
// AcceptNonStd defines whether to accept non-standard transactions. If
// true, non-standard transactions will be accepted into the mempool.
// Otherwise, all non-standard transactions will be rejected.
AcceptNonStd bool
// FreeTxRelayLimit defines the given amount in thousands of bytes
// per minute that transactions with no fee are rate limited to.
FreeTxRelayLimit float64
// MaxOrphanTxs is the maximum number of orphan transactions
// that can be queued.
MaxOrphanTxs int
// MaxOrphanTxSize is the maximum size allowed for orphan transactions.
// This helps prevent memory exhaustion attacks from sending a lot of
// of big orphans.
MaxOrphanTxSize int
// MaxSigOpCostPerTx is the cumulative maximum cost of all the signature
// operations in a single transaction we will relay or mine. It is a
// fraction of the max signature operations for a block.
MaxSigOpCostPerTx int
// MinRelayTxFee defines the minimum transaction fee in BTC/kB to be
// considered a non-zero fee.
MinRelayTxFee btcutil.Amount
}
// TxDesc is a descriptor containing a transaction in the mempool along with
// additional metadata.
type TxDesc struct {
mining.TxDesc
// StartingPriority is the priority of the transaction when it was added
// to the pool.
StartingPriority float64
}
// orphanTx is normal transaction that references an ancestor transaction
// that is not yet available. It also contains additional information related
// to it such as an expiration time to help prevent caching the orphan forever.
type orphanTx struct {
tx *btcutil.Tx
tag Tag
expiration time.Time
}
// TxPool is used as a source of transactions that need to be mined into blocks
// and relayed to other peers. It is safe for concurrent access from multiple
// peers.
type TxPool struct {
// The following variables must only be used atomically.
lastUpdated int64 // last time pool was updated
mtx sync.RWMutex
cfg Config
pool map[chainhash.Hash]*TxDesc
orphans map[chainhash.Hash]*orphanTx
orphansByPrev map[wire.OutPoint]map[chainhash.Hash]*btcutil.Tx
outpoints map[wire.OutPoint]*btcutil.Tx
pennyTotal float64 // exponentially decaying total for penny spends.
lastPennyUnix int64 // unix time of last ``penny spend''
// nextExpireScan is the time after which the orphan pool will be
// scanned in order to evict orphans. This is NOT a hard deadline as
// the scan will only run when an orphan is added to the pool as opposed
// to on an unconditional timer.
nextExpireScan time.Time
}
// Ensure the TxPool type implements the mining.TxSource interface.
var _ mining.TxSource = (*TxPool)(nil)
// removeOrphan is the internal function which implements the public
// RemoveOrphan. See the comment for RemoveOrphan for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) removeOrphan(tx *btcutil.Tx, removeRedeemers bool) {
// Nothing to do if passed tx is not an orphan.
txHash := tx.Hash()
otx, exists := mp.orphans[*txHash]
if !exists {
return
}
// Remove the reference from the previous orphan index.
for _, txIn := range otx.tx.MsgTx().TxIn {
orphans, exists := mp.orphansByPrev[txIn.PreviousOutPoint]
if exists {
delete(orphans, *txHash)
// Remove the map entry altogether if there are no
// longer any orphans which depend on it.
if len(orphans) == 0 {
delete(mp.orphansByPrev, txIn.PreviousOutPoint)
}
}
}
// Remove any orphans that redeem outputs from this one if requested.
if removeRedeemers {
prevOut := wire.OutPoint{Hash: *txHash}
for txOutIdx := range tx.MsgTx().TxOut {
prevOut.Index = uint32(txOutIdx)
for _, orphan := range mp.orphansByPrev[prevOut] {
mp.removeOrphan(orphan, true)
}
}
}
// Remove the transaction from the orphan pool.
delete(mp.orphans, *txHash)
}
// RemoveOrphan removes the passed orphan transaction from the orphan pool and
// previous orphan index.
//
// This function is safe for concurrent access.
func (mp *TxPool) RemoveOrphan(tx *btcutil.Tx) {
mp.mtx.Lock()
mp.removeOrphan(tx, false)
mp.mtx.Unlock()
}
// RemoveOrphansByTag removes all orphan transactions tagged with the provided
// identifier.
//
// This function is safe for concurrent access.
func (mp *TxPool) RemoveOrphansByTag(tag Tag) uint64 {
var numEvicted uint64
mp.mtx.Lock()
for _, otx := range mp.orphans {
if otx.tag == tag {
mp.removeOrphan(otx.tx, true)
numEvicted++
}
}
mp.mtx.Unlock()
return numEvicted
}
// limitNumOrphans limits the number of orphan transactions by evicting a random
// orphan if adding a new one would cause it to overflow the max allowed.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) limitNumOrphans() error {
// Scan through the orphan pool and remove any expired orphans when it's
// time. This is done for efficiency so the scan only happens
// periodically instead of on every orphan added to the pool.
if now := time.Now(); now.After(mp.nextExpireScan) {
origNumOrphans := len(mp.orphans)
for _, otx := range mp.orphans {
if now.After(otx.expiration) {
// Remove redeemers too because the missing
// parents are very unlikely to ever materialize
// since the orphan has already been around more
// than long enough for them to be delivered.
mp.removeOrphan(otx.tx, true)
}
}
// Set next expiration scan to occur after the scan interval.
mp.nextExpireScan = now.Add(orphanExpireScanInterval)
numOrphans := len(mp.orphans)
if numExpired := origNumOrphans - numOrphans; numExpired > 0 {
log.Debugf("Expired %d %s (remaining: %d)", numExpired,
pickNoun(numExpired, "orphan", "orphans"),
numOrphans)
}
}
// Nothing to do if adding another orphan will not cause the pool to
// exceed the limit.
if len(mp.orphans)+1 <= mp.cfg.Policy.MaxOrphanTxs {
return nil
}
// Remove a random entry from the map. For most compilers, Go's
// range statement iterates starting at a random item although
// that is not 100% guaranteed by the spec. The iteration order
// is not important here because an adversary would have to be
// able to pull off preimage attacks on the hashing function in
// order to target eviction of specific entries anyways.
for _, otx := range mp.orphans {
// Don't remove redeemers in the case of a random eviction since
// it is quite possible it might be needed again shortly.
mp.removeOrphan(otx.tx, false)
break
}
return nil
}
// addOrphan adds an orphan transaction to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) addOrphan(tx *btcutil.Tx, tag Tag) {
// Nothing to do if no orphans are allowed.
if mp.cfg.Policy.MaxOrphanTxs <= 0 {
return
}
// Limit the number orphan transactions to prevent memory exhaustion.
// This will periodically remove any expired orphans and evict a random
// orphan if space is still needed.
mp.limitNumOrphans()
mp.orphans[*tx.Hash()] = &orphanTx{
tx: tx,
tag: tag,
expiration: time.Now().Add(orphanTTL),
}
for _, txIn := range tx.MsgTx().TxIn {
if _, exists := mp.orphansByPrev[txIn.PreviousOutPoint]; !exists {
mp.orphansByPrev[txIn.PreviousOutPoint] =
make(map[chainhash.Hash]*btcutil.Tx)
}
mp.orphansByPrev[txIn.PreviousOutPoint][*tx.Hash()] = tx
}
log.Debugf("Stored orphan transaction %v (total: %d)", tx.Hash(),
len(mp.orphans))
}
// maybeAddOrphan potentially adds an orphan to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) maybeAddOrphan(tx *btcutil.Tx, tag Tag) error {
// Ignore orphan transactions that are too large. This helps avoid
// a memory exhaustion attack based on sending a lot of really large
// orphans. In the case there is a valid transaction larger than this,
// it will ultimtely be rebroadcast after the parent transactions
// have been mined or otherwise received.
//
// Note that the number of orphan transactions in the orphan pool is
// also limited, so this equates to a maximum memory used of
// mp.cfg.Policy.MaxOrphanTxSize * mp.cfg.Policy.MaxOrphanTxs (which is ~5MB
// using the default values at the time this comment was written).
serializedLen := tx.MsgTx().SerializeSize()
if serializedLen > mp.cfg.Policy.MaxOrphanTxSize {
str := fmt.Sprintf("orphan transaction size of %d bytes is "+
"larger than max allowed size of %d bytes",
serializedLen, mp.cfg.Policy.MaxOrphanTxSize)
return txRuleError(wire.RejectNonstandard, str)
}
// Add the orphan if the none of the above disqualified it.
mp.addOrphan(tx, tag)
return nil
}
// removeOrphanDoubleSpends removes all orphans which spend outputs spent by the
// passed transaction from the orphan pool. Removing those orphans then leads
// to removing all orphans which rely on them, recursively. This is necessary
// when a transaction is added to the main pool because it may spend outputs
// that orphans also spend.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) removeOrphanDoubleSpends(tx *btcutil.Tx) {
msgTx := tx.MsgTx()
for _, txIn := range msgTx.TxIn {
for _, orphan := range mp.orphansByPrev[txIn.PreviousOutPoint] {
mp.removeOrphan(orphan, true)
}
}
}
// isTransactionInPool returns whether or not the passed transaction already
// exists in the main pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *TxPool) isTransactionInPool(hash *chainhash.Hash) bool {
if _, exists := mp.pool[*hash]; exists {
return true
}
return false
}
// IsTransactionInPool returns whether or not the passed transaction already
// exists in the main pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) IsTransactionInPool(hash *chainhash.Hash) bool {
// Protect concurrent access.
mp.mtx.RLock()
inPool := mp.isTransactionInPool(hash)
mp.mtx.RUnlock()
return inPool
}
// isOrphanInPool returns whether or not the passed transaction already exists
// in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *TxPool) isOrphanInPool(hash *chainhash.Hash) bool {
if _, exists := mp.orphans[*hash]; exists {
return true
}
return false
}
// IsOrphanInPool returns whether or not the passed transaction already exists
// in the orphan pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) IsOrphanInPool(hash *chainhash.Hash) bool {
// Protect concurrent access.
mp.mtx.RLock()
inPool := mp.isOrphanInPool(hash)
mp.mtx.RUnlock()
return inPool
}
// haveTransaction returns whether or not the passed transaction already exists
// in the main pool or in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *TxPool) haveTransaction(hash *chainhash.Hash) bool {
return mp.isTransactionInPool(hash) || mp.isOrphanInPool(hash)
}
// HaveTransaction returns whether or not the passed transaction already exists
// in the main pool or in the orphan pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) HaveTransaction(hash *chainhash.Hash) bool {
// Protect concurrent access.
mp.mtx.RLock()
haveTx := mp.haveTransaction(hash)
mp.mtx.RUnlock()
return haveTx
}
// removeTransaction is the internal function which implements the public
// RemoveTransaction. See the comment for RemoveTransaction for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) removeTransaction(tx *btcutil.Tx, removeRedeemers bool) {
txHash := tx.Hash()
if removeRedeemers {
// Remove any transactions which rely on this one.
for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ {
prevOut := wire.OutPoint{Hash: *txHash, Index: i}
if txRedeemer, exists := mp.outpoints[prevOut]; exists {
mp.removeTransaction(txRedeemer, true)
}
}
}
// Remove the transaction if needed.
if txDesc, exists := mp.pool[*txHash]; exists {
// Remove unconfirmed address index entries associated with the
// transaction if enabled.
if mp.cfg.AddrIndex != nil {
mp.cfg.AddrIndex.RemoveUnconfirmedTx(txHash)
}
// Mark the referenced outpoints as unspent by the pool.
for _, txIn := range txDesc.Tx.MsgTx().TxIn {
delete(mp.outpoints, txIn.PreviousOutPoint)
}
delete(mp.pool, *txHash)
atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix())
}
}
// RemoveTransaction removes the passed transaction from the mempool. When the
// removeRedeemers flag is set, any transactions that redeem outputs from the
// removed transaction will also be removed recursively from the mempool, as
// they would otherwise become orphans.
//
// This function is safe for concurrent access.
func (mp *TxPool) RemoveTransaction(tx *btcutil.Tx, removeRedeemers bool) {
// Protect concurrent access.
mp.mtx.Lock()
mp.removeTransaction(tx, removeRedeemers)
mp.mtx.Unlock()
}
// RemoveDoubleSpends removes all transactions which spend outputs spent by the
// passed transaction from the memory pool. Removing those transactions then
// leads to removing all transactions which rely on them, recursively. This is
// necessary when a block is connected to the main chain because the block may
// contain transactions which were previously unknown to the memory pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) RemoveDoubleSpends(tx *btcutil.Tx) {
// Protect concurrent access.
mp.mtx.Lock()
for _, txIn := range tx.MsgTx().TxIn {
if txRedeemer, ok := mp.outpoints[txIn.PreviousOutPoint]; ok {
if !txRedeemer.Hash().IsEqual(tx.Hash()) {
mp.removeTransaction(txRedeemer, true)
}
}
}
mp.mtx.Unlock()
}
// addTransaction adds the passed transaction to the memory pool. It should
// not be called directly as it doesn't perform any validation. This is a
// helper for maybeAcceptTransaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) addTransaction(utxoView *blockchain.UtxoViewpoint, tx *btcutil.Tx, height int32, fee int64) *TxDesc {
// Add the transaction to the pool and mark the referenced outpoints
// as spent by the pool.
txD := &TxDesc{
TxDesc: mining.TxDesc{
Tx: tx,
Added: time.Now(),
Height: height,
Fee: fee,
FeePerKB: fee * 1000 / GetTxVirtualSize(tx),
},
StartingPriority: mining.CalcPriority(tx.MsgTx(), utxoView, height),
}
mp.pool[*tx.Hash()] = txD
for _, txIn := range tx.MsgTx().TxIn {
mp.outpoints[txIn.PreviousOutPoint] = tx
}
atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix())
// Add unconfirmed address index entries associated with the transaction
// if enabled.
if mp.cfg.AddrIndex != nil {
mp.cfg.AddrIndex.AddUnconfirmedTx(tx, utxoView)
}
// Record this tx for fee estimation if enabled.
if mp.cfg.FeeEstimator != nil {
mp.cfg.FeeEstimator.ObserveTransaction(txD)
}
return txD
}
// checkPoolDoubleSpend checks whether or not the passed transaction is
// attempting to spend coins already spent by other transactions in the pool.
// Note it does not check for double spends against transactions already in the
// main chain.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *TxPool) checkPoolDoubleSpend(tx *btcutil.Tx) error {
for _, txIn := range tx.MsgTx().TxIn {
if txR, exists := mp.outpoints[txIn.PreviousOutPoint]; exists {
str := fmt.Sprintf("output %v already spent by "+
"transaction %v in the memory pool",
txIn.PreviousOutPoint, txR.Hash())
return txRuleError(wire.RejectDuplicate, str)
}
}
return nil
}
// fetchInputUtxos loads utxo details about the input transactions referenced by
// the passed transaction. First, it loads the details form the viewpoint of
// the main chain, then it adjusts them based upon the contents of the
// transaction pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *TxPool) fetchInputUtxos(tx *btcutil.Tx) (*blockchain.UtxoViewpoint, error) {
utxoView, err := mp.cfg.FetchUtxoView(tx)
if err != nil {
return nil, err
}
// Attempt to populate any missing inputs from the transaction pool.
for originHash, entry := range utxoView.Entries() {
if entry != nil && !entry.IsFullySpent() {
continue
}
if poolTxDesc, exists := mp.pool[originHash]; exists {
utxoView.AddTxOuts(poolTxDesc.Tx, mining.UnminedHeight)
}
}
return utxoView, nil
}
// FetchTransaction returns the requested transaction from the transaction pool.
// This only fetches from the main transaction pool and does not include
// orphans.
//
// This function is safe for concurrent access.
func (mp *TxPool) FetchTransaction(txHash *chainhash.Hash) (*btcutil.Tx, error) {
// Protect concurrent access.
mp.mtx.RLock()
txDesc, exists := mp.pool[*txHash]
mp.mtx.RUnlock()
if exists {
return txDesc.Tx, nil
}
return nil, fmt.Errorf("transaction is not in the pool")
}
// maybeAcceptTransaction is the internal function which implements the public
// MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for
// more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit, rejectDupOrphans bool) ([]*chainhash.Hash, *TxDesc, error) {
txHash := tx.Hash()
// If a transaction has iwtness data, and segwit isn't active yet, If
// segwit isn't active yet, then we won't accept it into the mempool as
// it can't be mined yet.
if tx.MsgTx().HasWitness() {
segwitActive, err := mp.cfg.IsDeploymentActive(chaincfg.DeploymentSegwit)
if err != nil {
return nil, nil, err
}
if !segwitActive {
str := fmt.Sprintf("transaction %v has witness data, "+
"but segwit isn't active yet", txHash)
return nil, nil, txRuleError(wire.RejectNonstandard, str)
}
}
// Don't accept the transaction if it already exists in the pool. This
// applies to orphan transactions as well when the reject duplicate
// orphans flag is set. This check is intended to be a quick check to
// weed out duplicates.
if mp.isTransactionInPool(txHash) || (rejectDupOrphans &&
mp.isOrphanInPool(txHash)) {
str := fmt.Sprintf("already have transaction %v", txHash)
return nil, nil, txRuleError(wire.RejectDuplicate, str)
}
// Perform preliminary sanity checks on the transaction. This makes
// use of blockchain which contains the invariant rules for what
// transactions are allowed into blocks.
err := blockchain.CheckTransactionSanity(tx)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
// A standalone transaction must not be a coinbase transaction.
if blockchain.IsCoinBase(tx) {
str := fmt.Sprintf("transaction %v is an individual coinbase",
txHash)
return nil, nil, txRuleError(wire.RejectInvalid, str)
}
// Get the current height of the main chain. A standalone transaction
// will be mined into the next block at best, so its height is at least
// one more than the current height.
bestHeight := mp.cfg.BestHeight()
nextBlockHeight := bestHeight + 1
medianTimePast := mp.cfg.MedianTimePast()
// Don't allow non-standard transactions if the network parameters
// forbid their acceptance.
if !mp.cfg.Policy.AcceptNonStd {
err = checkTransactionStandard(tx, nextBlockHeight,
medianTimePast, mp.cfg.Policy.MinRelayTxFee,
mp.cfg.Policy.MaxTxVersion)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = wire.RejectNonstandard
}
str := fmt.Sprintf("transaction %v is not standard: %v",
txHash, err)
return nil, nil, txRuleError(rejectCode, str)
}
}
// The transaction may not use any of the same outputs as other
// transactions already in the pool as that would ultimately result in a
// double spend. This check is intended to be quick and therefore only
// detects double spends within the transaction pool itself. The
// transaction could still be double spending coins from the main chain
// at this point. There is a more in-depth check that happens later
// after fetching the referenced transaction inputs from the main chain
// which examines the actual spend data and prevents double spends.
err = mp.checkPoolDoubleSpend(tx)
if err != nil {
return nil, nil, err
}
// Fetch all of the unspent transaction outputs referenced by the inputs
// to this transaction. This function also attempts to fetch the
// transaction itself to be used for detecting a duplicate transaction
// without needing to do a separate lookup.
utxoView, err := mp.fetchInputUtxos(tx)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
// Don't allow the transaction if it exists in the main chain and is not
// not already fully spent.
txEntry := utxoView.LookupEntry(txHash)
if txEntry != nil && !txEntry.IsFullySpent() {
return nil, nil, txRuleError(wire.RejectDuplicate,
"transaction already exists")
}
delete(utxoView.Entries(), *txHash)
// Transaction is an orphan if any of the referenced input transactions
// don't exist. Adding orphans to the orphan pool is not handled by
// this function, and the caller should use maybeAddOrphan if this
// behavior is desired.
var missingParents []*chainhash.Hash
for originHash, entry := range utxoView.Entries() {
if entry == nil || entry.IsFullySpent() {
// Must make a copy of the hash here since the iterator
// is replaced and taking its address directly would
// result in all of the entries pointing to the same
// memory location and thus all be the final hash.
hashCopy := originHash
missingParents = append(missingParents, &hashCopy)
}
}
if len(missingParents) > 0 {
return missingParents, nil, nil
}
// Don't allow the transaction into the mempool unless its sequence
// lock is active, meaning that it'll be allowed into the next block
// with respect to its defined relative lock times.
sequenceLock, err := mp.cfg.CalcSequenceLock(tx, utxoView)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
if !blockchain.SequenceLockActive(sequenceLock, nextBlockHeight,
medianTimePast) {
return nil, nil, txRuleError(wire.RejectNonstandard,
"transaction's sequence locks on inputs not met")
}
// Perform several checks on the transaction inputs using the invariant
// rules in blockchain for what transactions are allowed into blocks.
// Also returns the fees associated with the transaction which will be
// used later.
txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight,
utxoView, mp.cfg.ChainParams)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
// Don't allow transactions with non-standard inputs if the network
// parameters forbid their acceptance.
if !mp.cfg.Policy.AcceptNonStd {
err := checkInputsStandard(tx, utxoView)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = wire.RejectNonstandard
}
str := fmt.Sprintf("transaction %v has a non-standard "+
"input: %v", txHash, err)
return nil, nil, txRuleError(rejectCode, str)
}
}
// NOTE: if you modify this code to accept non-standard transactions,
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
// Don't allow transactions with an excessive number of signature
// operations which would result in making it impossible to mine. Since
// the coinbase address itself can contain signature operations, the
// maximum allowed signature operations per transaction is less than
// the maximum allowed signature operations per block.
// TODO(roasbeef): last bool should be conditional on segwit activation
sigOpCost, err := blockchain.GetSigOpCost(tx, false, utxoView, true, true)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
if sigOpCost > mp.cfg.Policy.MaxSigOpCostPerTx {
str := fmt.Sprintf("transaction %v sigop cost is too high: %d > %d",
txHash, sigOpCost, mp.cfg.Policy.MaxSigOpCostPerTx)
return nil, nil, txRuleError(wire.RejectNonstandard, str)
}
// Don't allow transactions with fees too low to get into a mined block.
//
// Most miners allow a free transaction area in blocks they mine to go
// alongside the area used for high-priority transactions as well as
// transactions with fees. A transaction size of up to 1000 bytes is
// considered safe to go into this section. Further, the minimum fee
// calculated below on its own would encourage several small
// transactions to avoid fees rather than one single larger transaction
// which is more desirable. Therefore, as long as the size of the
// transaction does not exceeed 1000 less than the reserved space for
// high-priority transactions, don't require a fee for it.
serializedSize := GetTxVirtualSize(tx)
minFee := calcMinRequiredTxRelayFee(serializedSize,
mp.cfg.Policy.MinRelayTxFee)
if serializedSize >= (DefaultBlockPrioritySize-1000) && txFee < minFee {
str := fmt.Sprintf("transaction %v has %d fees which is under "+
"the required amount of %d", txHash, txFee,
minFee)
return nil, nil, txRuleError(wire.RejectInsufficientFee, str)
}
// Require that free transactions have sufficient priority to be mined
// in the next block. Transactions which are being added back to the
// memory pool from blocks that have been disconnected during a reorg
// are exempted.
if isNew && !mp.cfg.Policy.DisableRelayPriority && txFee < minFee {
currentPriority := mining.CalcPriority(tx.MsgTx(), utxoView,
nextBlockHeight)
if currentPriority <= mining.MinHighPriority {
str := fmt.Sprintf("transaction %v has insufficient "+
"priority (%g <= %g)", txHash,
currentPriority, mining.MinHighPriority)
return nil, nil, txRuleError(wire.RejectInsufficientFee, str)
}
}
// Free-to-relay transactions are rate limited here to prevent
// penny-flooding with tiny transactions as a form of attack.
if rateLimit && txFee < minFee {
nowUnix := time.Now().Unix()
// Decay passed data with an exponentially decaying ~10 minute
// window - matches bitcoind handling.
mp.pennyTotal *= math.Pow(1.0-1.0/600.0,
float64(nowUnix-mp.lastPennyUnix))
mp.lastPennyUnix = nowUnix
// Are we still over the limit?
if mp.pennyTotal >= mp.cfg.Policy.FreeTxRelayLimit*10*1000 {
str := fmt.Sprintf("transaction %v has been rejected "+
"by the rate limiter due to low fees", txHash)
return nil, nil, txRuleError(wire.RejectInsufficientFee, str)
}
oldTotal := mp.pennyTotal
mp.pennyTotal += float64(serializedSize)
log.Tracef("rate limit: curTotal %v, nextTotal: %v, "+
"limit %v", oldTotal, mp.pennyTotal,
mp.cfg.Policy.FreeTxRelayLimit*10*1000)
}
// Verify crypto signatures for each input and reject the transaction if
// any don't verify.
err = blockchain.ValidateTransactionScripts(tx, utxoView,
txscript.StandardVerifyFlags, mp.cfg.SigCache,
mp.cfg.HashCache)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, nil, chainRuleError(cerr)
}
return nil, nil, err
}
// Add to transaction pool.
txD := mp.addTransaction(utxoView, tx, bestHeight, txFee)
log.Debugf("Accepted transaction %v (pool size: %v)", txHash,
len(mp.pool))
return nil, txD, nil
}
// MaybeAcceptTransaction is the main workhorse for handling insertion of new
// free-standing transactions into a memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, detecting orphan transactions, and insertion into the memory pool.
//
// If the transaction is an orphan (missing parent transactions), the
// transaction is NOT added to the orphan pool, but each unknown referenced
// parent is returned. Use ProcessTransaction instead if new orphans should
// be added to the orphan pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) MaybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*chainhash.Hash, *TxDesc, error) {
// Protect concurrent access.
mp.mtx.Lock()
hashes, txD, err := mp.maybeAcceptTransaction(tx, isNew, rateLimit, true)
mp.mtx.Unlock()
return hashes, txD, err
}
// processOrphans is the internal function which implements the public
// ProcessOrphans. See the comment for ProcessOrphans for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) processOrphans(acceptedTx *btcutil.Tx) []*TxDesc {
var acceptedTxns []*TxDesc
// Start with processing at least the passed transaction.
processList := list.New()
processList.PushBack(acceptedTx)
for processList.Len() > 0 {
// Pop the transaction to process from the front of the list.
firstElement := processList.Remove(processList.Front())
processItem := firstElement.(*btcutil.Tx)
prevOut := wire.OutPoint{Hash: *processItem.Hash()}
for txOutIdx := range processItem.MsgTx().TxOut {
// Look up all orphans that redeem the output that is
// now available. This will typically only be one, but
// it could be multiple if the orphan pool contains
// double spends. While it may seem odd that the orphan
// pool would allow this since there can only possibly
// ultimately be a single redeemer, it's important to
// track it this way to prevent malicious actors from
// being able to purposely constructing orphans that
// would otherwise make outputs unspendable.
//
// Skip to the next available output if there are none.
prevOut.Index = uint32(txOutIdx)
orphans, exists := mp.orphansByPrev[prevOut]
if !exists {
continue
}
// Potentially accept an orphan into the tx pool.
for _, tx := range orphans {
missing, txD, err := mp.maybeAcceptTransaction(
tx, true, true, false)
if err != nil {
// The orphan is now invalid, so there
// is no way any other orphans which
// redeem any of its outputs can be
// accepted. Remove them.
mp.removeOrphan(tx, true)
break
}
// Transaction is still an orphan. Try the next
// orphan which redeems this output.
if len(missing) > 0 {
continue
}
// Transaction was accepted into the main pool.
//
// Add it to the list of accepted transactions
// that are no longer orphans, remove it from
// the orphan pool, and add it to the list of
// transactions to process so any orphans that
// depend on it are handled too.
acceptedTxns = append(acceptedTxns, txD)
mp.removeOrphan(tx, false)
processList.PushBack(tx)
// Only one transaction for this outpoint can be
// accepted, so the rest are now double spends
// and are removed later.
break
}
}
}
// Recursively remove any orphans that also redeem any outputs redeemed
// by the accepted transactions since those are now definitive double
// spends.
mp.removeOrphanDoubleSpends(acceptedTx)
for _, txD := range acceptedTxns {
mp.removeOrphanDoubleSpends(txD.Tx)
}
return acceptedTxns
}
// ProcessOrphans determines if there are any orphans which depend on the passed
// transaction hash (it is possible that they are no longer orphans) and
// potentially accepts them to the memory pool. It repeats the process for the
// newly accepted transactions (to detect further orphans which may no longer be
// orphans) until there are no more.
//
// It returns a slice of transactions added to the mempool. A nil slice means
// no transactions were moved from the orphan pool to the mempool.
//
// This function is safe for concurrent access.
func (mp *TxPool) ProcessOrphans(acceptedTx *btcutil.Tx) []*TxDesc {
mp.mtx.Lock()
acceptedTxns := mp.processOrphans(acceptedTx)
mp.mtx.Unlock()
return acceptedTxns
}
// ProcessTransaction is the main workhorse for handling insertion of new
// free-standing transactions into the memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
//
// It returns a slice of transactions added to the mempool. When the
// error is nil, the list will include the passed transaction itself along
// with any additional orphan transaactions that were added as a result of
// the passed one being accepted.
//
// This function is safe for concurrent access.
func (mp *TxPool) ProcessTransaction(tx *btcutil.Tx, allowOrphan, rateLimit bool, tag Tag) ([]*TxDesc, error) {
log.Tracef("Processing transaction %v", tx.Hash())
// Protect concurrent access.
mp.mtx.Lock()
defer mp.mtx.Unlock()
// Potentially accept the transaction to the memory pool.
missingParents, txD, err := mp.maybeAcceptTransaction(tx, true, rateLimit,
true)
if err != nil {
return nil, err
}
if len(missingParents) == 0 {
// Accept any orphan transactions that depend on this
// transaction (they may no longer be orphans if all inputs
// are now available) and repeat for those accepted
// transactions until there are no more.
newTxs := mp.processOrphans(tx)
acceptedTxs := make([]*TxDesc, len(newTxs)+1)
// Add the parent transaction first so remote nodes
// do not add orphans.
acceptedTxs[0] = txD
copy(acceptedTxs[1:], newTxs)
return acceptedTxs, nil
}
// The transaction is an orphan (has inputs missing). Reject
// it if the flag to allow orphans is not set.
if !allowOrphan {
// Only use the first missing parent transaction in
// the error message.
//
// NOTE: RejectDuplicate is really not an accurate
// reject code here, but it matches the reference
// implementation and there isn't a better choice due
// to the limited number of reject codes. Missing
// inputs is assumed to mean they are already spent
// which is not really always the case.
str := fmt.Sprintf("orphan transaction %v references "+
"outputs of unknown or fully-spent "+
"transaction %v", tx.Hash(), missingParents[0])
return nil, txRuleError(wire.RejectDuplicate, str)
}
// Potentially add the orphan transaction to the orphan pool.
err = mp.maybeAddOrphan(tx, tag)
return nil, err
}
// Count returns the number of transactions in the main pool. It does not
// include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) Count() int {
mp.mtx.RLock()
count := len(mp.pool)
mp.mtx.RUnlock()
return count
}
// TxHashes returns a slice of hashes for all of the transactions in the memory
// pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) TxHashes() []*chainhash.Hash {
mp.mtx.RLock()
hashes := make([]*chainhash.Hash, len(mp.pool))
i := 0
for hash := range mp.pool {
hashCopy := hash
hashes[i] = &hashCopy
i++
}
mp.mtx.RUnlock()
return hashes
}
// TxDescs returns a slice of descriptors for all the transactions in the pool.
// The descriptors are to be treated as read only.
//
// This function is safe for concurrent access.
func (mp *TxPool) TxDescs() []*TxDesc {
mp.mtx.RLock()
descs := make([]*TxDesc, len(mp.pool))
i := 0
for _, desc := range mp.pool {
descs[i] = desc
i++
}
mp.mtx.RUnlock()
return descs
}
// MiningDescs returns a slice of mining descriptors for all the transactions
// in the pool.
//
// This is part of the mining.TxSource interface implementation and is safe for
// concurrent access as required by the interface contract.
func (mp *TxPool) MiningDescs() []*mining.TxDesc {
mp.mtx.RLock()
descs := make([]*mining.TxDesc, len(mp.pool))
i := 0
for _, desc := range mp.pool {
descs[i] = &desc.TxDesc
i++
}
mp.mtx.RUnlock()
return descs
}
// RawMempoolVerbose returns all of the entries in the mempool as a fully
// populated btcjson result.
//
// This function is safe for concurrent access.
func (mp *TxPool) RawMempoolVerbose() map[string]*btcjson.GetRawMempoolVerboseResult {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
result := make(map[string]*btcjson.GetRawMempoolVerboseResult,
len(mp.pool))
bestHeight := mp.cfg.BestHeight()
for _, desc := range mp.pool {
// Calculate the current priority based on the inputs to
// the transaction. Use zero if one or more of the
// input transactions can't be found for some reason.
tx := desc.Tx
var currentPriority float64
utxos, err := mp.fetchInputUtxos(tx)
if err == nil {
currentPriority = mining.CalcPriority(tx.MsgTx(), utxos,
bestHeight+1)
}
mpd := &btcjson.GetRawMempoolVerboseResult{
Size: int32(tx.MsgTx().SerializeSize()),
Vsize: int32(GetTxVirtualSize(tx)),
Fee: btcutil.Amount(desc.Fee).ToBTC(),
Time: desc.Added.Unix(),
Height: int64(desc.Height),
StartingPriority: desc.StartingPriority,
CurrentPriority: currentPriority,
Depends: make([]string, 0),
}
for _, txIn := range tx.MsgTx().TxIn {
hash := &txIn.PreviousOutPoint.Hash
if mp.haveTransaction(hash) {
mpd.Depends = append(mpd.Depends,
hash.String())
}
}
result[tx.Hash().String()] = mpd
}
return result
}
// LastUpdated returns the last time a transaction was added to or removed from
// the main pool. It does not include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) LastUpdated() time.Time {
return time.Unix(atomic.LoadInt64(&mp.lastUpdated), 0)
}
// New returns a new memory pool for validating and storing standalone
// transactions until they are mined into a block.
func New(cfg *Config) *TxPool {
return &TxPool{
cfg: *cfg,
pool: make(map[chainhash.Hash]*TxDesc),
orphans: make(map[chainhash.Hash]*orphanTx),
orphansByPrev: make(map[wire.OutPoint]map[chainhash.Hash]*btcutil.Tx),
nextExpireScan: time.Now().Add(orphanExpireScanInterval),
outpoints: make(map[wire.OutPoint]*btcutil.Tx),
}
}