lbcd/integration/rpctest/memwallet.go
Roy Lee 6f5311d7c6 [lbry] rename btcd to lbcd
Co-authored-by: Brannon King <countprimes@gmail.com>
2021-10-19 21:42:12 -07:00

591 lines
17 KiB
Go

// Copyright (c) 2016-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package rpctest
import (
"bytes"
"encoding/binary"
"fmt"
"sync"
"github.com/lbryio/lbcd/blockchain"
"github.com/lbryio/lbcd/btcec"
"github.com/lbryio/lbcd/chaincfg"
"github.com/lbryio/lbcd/chaincfg/chainhash"
"github.com/lbryio/lbcd/rpcclient"
"github.com/lbryio/lbcd/txscript"
"github.com/lbryio/lbcd/wire"
btcutil "github.com/lbryio/lbcutil"
"github.com/lbryio/lbcutil/hdkeychain"
)
var (
// hdSeed is the BIP 32 seed used by the memWallet to initialize it's
// HD root key. This value is hard coded in order to ensure
// deterministic behavior across test runs.
hdSeed = [chainhash.HashSize]byte{
0x79, 0xa6, 0x1a, 0xdb, 0xc6, 0xe5, 0xa2, 0xe1,
0x39, 0xd2, 0x71, 0x3a, 0x54, 0x6e, 0xc7, 0xc8,
0x75, 0x63, 0x2e, 0x75, 0xf1, 0xdf, 0x9c, 0x3f,
0xa6, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
)
// utxo represents an unspent output spendable by the memWallet. The maturity
// height of the transaction is recorded in order to properly observe the
// maturity period of direct coinbase outputs.
type utxo struct {
pkScript []byte
value btcutil.Amount
keyIndex uint32
maturityHeight int32
isLocked bool
}
// isMature returns true if the target utxo is considered "mature" at the
// passed block height. Otherwise, false is returned.
func (u *utxo) isMature(height int32) bool {
return height >= u.maturityHeight
}
// chainUpdate encapsulates an update to the current main chain. This struct is
// used to sync up the memWallet each time a new block is connected to the main
// chain.
type chainUpdate struct {
blockHeight int32
filteredTxns []*btcutil.Tx
isConnect bool // True if connect, false if disconnect
}
// undoEntry is functionally the opposite of a chainUpdate. An undoEntry is
// created for each new block received, then stored in a log in order to
// properly handle block re-orgs.
type undoEntry struct {
utxosDestroyed map[wire.OutPoint]*utxo
utxosCreated []wire.OutPoint
}
// memWallet is a simple in-memory wallet whose purpose is to provide basic
// wallet functionality to the harness. The wallet uses a hard-coded HD key
// hierarchy which promotes reproducibility between harness test runs.
type memWallet struct {
coinbaseKey *btcec.PrivateKey
coinbaseAddr btcutil.Address
// hdRoot is the root master private key for the wallet.
hdRoot *hdkeychain.ExtendedKey
// hdIndex is the next available key index offset from the hdRoot.
hdIndex uint32
// currentHeight is the latest height the wallet is known to be synced
// to.
currentHeight int32
// addrs tracks all addresses belonging to the wallet. The addresses
// are indexed by their keypath from the hdRoot.
addrs map[uint32]btcutil.Address
// utxos is the set of utxos spendable by the wallet.
utxos map[wire.OutPoint]*utxo
// reorgJournal is a map storing an undo entry for each new block
// received. Once a block is disconnected, the undo entry for the
// particular height is evaluated, thereby rewinding the effect of the
// disconnected block on the wallet's set of spendable utxos.
reorgJournal map[int32]*undoEntry
chainUpdates []*chainUpdate
chainUpdateSignal chan struct{}
chainMtx sync.Mutex
net *chaincfg.Params
rpc *rpcclient.Client
sync.RWMutex
}
// newMemWallet creates and returns a fully initialized instance of the
// memWallet given a particular blockchain's parameters.
func newMemWallet(net *chaincfg.Params, harnessID uint32) (*memWallet, error) {
// The wallet's final HD seed is: hdSeed || harnessID. This method
// ensures that each harness instance uses a deterministic root seed
// based on its harness ID.
var harnessHDSeed [chainhash.HashSize + 4]byte
copy(harnessHDSeed[:], hdSeed[:])
binary.BigEndian.PutUint32(harnessHDSeed[:chainhash.HashSize], harnessID)
hdRoot, err := hdkeychain.NewMaster(harnessHDSeed[:], net)
if err != nil {
return nil, nil
}
// The first child key from the hd root is reserved as the coinbase
// generation address.
coinbaseChild, err := hdRoot.Derive(0)
if err != nil {
return nil, err
}
coinbaseKey, err := coinbaseChild.ECPrivKey()
if err != nil {
return nil, err
}
coinbaseAddr, err := keyToAddr(coinbaseKey, net)
if err != nil {
return nil, err
}
// Track the coinbase generation address to ensure we properly track
// newly generated bitcoin we can spend.
addrs := make(map[uint32]btcutil.Address)
addrs[0] = coinbaseAddr
return &memWallet{
net: net,
coinbaseKey: coinbaseKey,
coinbaseAddr: coinbaseAddr,
hdIndex: 1,
hdRoot: hdRoot,
addrs: addrs,
utxos: make(map[wire.OutPoint]*utxo),
chainUpdateSignal: make(chan struct{}),
reorgJournal: make(map[int32]*undoEntry),
}, nil
}
// Start launches all goroutines required for the wallet to function properly.
func (m *memWallet) Start() {
go m.chainSyncer()
}
// SyncedHeight returns the height the wallet is known to be synced to.
//
// This function is safe for concurrent access.
func (m *memWallet) SyncedHeight() int32 {
m.RLock()
defer m.RUnlock()
return m.currentHeight
}
// SetRPCClient saves the passed rpc connection to btcd as the wallet's
// personal rpc connection.
func (m *memWallet) SetRPCClient(rpcClient *rpcclient.Client) {
m.rpc = rpcClient
}
// IngestBlock is a call-back which is to be triggered each time a new block is
// connected to the main chain. It queues the update for the chain syncer,
// calling the private version in sequential order.
func (m *memWallet) IngestBlock(height int32, header *wire.BlockHeader, filteredTxns []*btcutil.Tx) {
// Append this new chain update to the end of the queue of new chain
// updates.
m.chainMtx.Lock()
m.chainUpdates = append(m.chainUpdates, &chainUpdate{height,
filteredTxns, true})
m.chainMtx.Unlock()
// Launch a goroutine to signal the chainSyncer that a new update is
// available. We do this in a new goroutine in order to avoid blocking
// the main loop of the rpc client.
go func() {
m.chainUpdateSignal <- struct{}{}
}()
}
// ingestBlock updates the wallet's internal utxo state based on the outputs
// created and destroyed within each block.
func (m *memWallet) ingestBlock(update *chainUpdate) {
// Update the latest synced height, then process each filtered
// transaction in the block creating and destroying utxos within
// the wallet as a result.
m.currentHeight = update.blockHeight
undo := &undoEntry{
utxosDestroyed: make(map[wire.OutPoint]*utxo),
}
for _, tx := range update.filteredTxns {
mtx := tx.MsgTx()
isCoinbase := blockchain.IsCoinBaseTx(mtx)
txHash := mtx.TxHash()
m.evalOutputs(mtx.TxOut, &txHash, isCoinbase, undo)
m.evalInputs(mtx.TxIn, undo)
}
// Finally, record the undo entry for this block so we can
// properly update our internal state in response to the block
// being re-org'd from the main chain.
m.reorgJournal[update.blockHeight] = undo
}
// chainSyncer is a goroutine dedicated to processing new blocks in order to
// keep the wallet's utxo state up to date.
//
// NOTE: This MUST be run as a goroutine.
func (m *memWallet) chainSyncer() {
var update *chainUpdate
for range m.chainUpdateSignal {
// A new update is available, so pop the new chain update from
// the front of the update queue.
m.chainMtx.Lock()
update = m.chainUpdates[0]
m.chainUpdates[0] = nil // Set to nil to prevent GC leak.
m.chainUpdates = m.chainUpdates[1:]
m.chainMtx.Unlock()
m.Lock()
if update.isConnect {
m.ingestBlock(update)
} else {
m.unwindBlock(update)
}
m.Unlock()
}
}
// evalOutputs evaluates each of the passed outputs, creating a new matching
// utxo within the wallet if we're able to spend the output.
func (m *memWallet) evalOutputs(outputs []*wire.TxOut, txHash *chainhash.Hash,
isCoinbase bool, undo *undoEntry) {
for i, output := range outputs {
pkScript := output.PkScript
// Scan all the addresses we currently control to see if the
// output is paying to us.
for keyIndex, addr := range m.addrs {
pkHash := addr.ScriptAddress()
if !bytes.Contains(pkScript, pkHash) {
continue
}
// If this is a coinbase output, then we mark the
// maturity height at the proper block height in the
// future.
var maturityHeight int32
if isCoinbase {
maturityHeight = m.currentHeight + int32(m.net.CoinbaseMaturity)
}
op := wire.OutPoint{Hash: *txHash, Index: uint32(i)}
m.utxos[op] = &utxo{
value: btcutil.Amount(output.Value),
keyIndex: keyIndex,
maturityHeight: maturityHeight,
pkScript: pkScript,
}
undo.utxosCreated = append(undo.utxosCreated, op)
}
}
}
// evalInputs scans all the passed inputs, destroying any utxos within the
// wallet which are spent by an input.
func (m *memWallet) evalInputs(inputs []*wire.TxIn, undo *undoEntry) {
for _, txIn := range inputs {
op := txIn.PreviousOutPoint
oldUtxo, ok := m.utxos[op]
if !ok {
continue
}
undo.utxosDestroyed[op] = oldUtxo
delete(m.utxos, op)
}
}
// UnwindBlock is a call-back which is to be executed each time a block is
// disconnected from the main chain. It queues the update for the chain syncer,
// calling the private version in sequential order.
func (m *memWallet) UnwindBlock(height int32, header *wire.BlockHeader) {
// Append this new chain update to the end of the queue of new chain
// updates.
m.chainMtx.Lock()
m.chainUpdates = append(m.chainUpdates, &chainUpdate{height,
nil, false})
m.chainMtx.Unlock()
// Launch a goroutine to signal the chainSyncer that a new update is
// available. We do this in a new goroutine in order to avoid blocking
// the main loop of the rpc client.
go func() {
m.chainUpdateSignal <- struct{}{}
}()
}
// unwindBlock undoes the effect that a particular block had on the wallet's
// internal utxo state.
func (m *memWallet) unwindBlock(update *chainUpdate) {
undo := m.reorgJournal[update.blockHeight]
for _, utxo := range undo.utxosCreated {
delete(m.utxos, utxo)
}
for outPoint, utxo := range undo.utxosDestroyed {
m.utxos[outPoint] = utxo
}
delete(m.reorgJournal, update.blockHeight)
}
// newAddress returns a new address from the wallet's hd key chain. It also
// loads the address into the RPC client's transaction filter to ensure any
// transactions that involve it are delivered via the notifications.
func (m *memWallet) newAddress() (btcutil.Address, error) {
index := m.hdIndex
childKey, err := m.hdRoot.Derive(index)
if err != nil {
return nil, err
}
privKey, err := childKey.ECPrivKey()
if err != nil {
return nil, err
}
addr, err := keyToAddr(privKey, m.net)
if err != nil {
return nil, err
}
err = m.rpc.LoadTxFilter(false, []btcutil.Address{addr}, nil)
if err != nil {
return nil, err
}
m.addrs[index] = addr
m.hdIndex++
return addr, nil
}
// NewAddress returns a fresh address spendable by the wallet.
//
// This function is safe for concurrent access.
func (m *memWallet) NewAddress() (btcutil.Address, error) {
m.Lock()
defer m.Unlock()
return m.newAddress()
}
// fundTx attempts to fund a transaction sending amt bitcoin. The coins are
// selected such that the final amount spent pays enough fees as dictated by the
// passed fee rate. The passed fee rate should be expressed in
// satoshis-per-byte. The transaction being funded can optionally include a
// change output indicated by the change boolean.
//
// NOTE: The memWallet's mutex must be held when this function is called.
func (m *memWallet) fundTx(tx *wire.MsgTx, amt btcutil.Amount,
feeRate btcutil.Amount, change bool) error {
const (
// spendSize is the largest number of bytes of a sigScript
// which spends a p2pkh output: OP_DATA_73 <sig> OP_DATA_33 <pubkey>
spendSize = 1 + 73 + 1 + 33
)
var (
amtSelected btcutil.Amount
txSize int
)
for outPoint, utxo := range m.utxos {
// Skip any outputs that are still currently immature or are
// currently locked.
if !utxo.isMature(m.currentHeight) || utxo.isLocked {
continue
}
amtSelected += utxo.value
// Add the selected output to the transaction, updating the
// current tx size while accounting for the size of the future
// sigScript.
tx.AddTxIn(wire.NewTxIn(&outPoint, nil, nil))
txSize = tx.SerializeSize() + spendSize*len(tx.TxIn)
// Calculate the fee required for the txn at this point
// observing the specified fee rate. If we don't have enough
// coins from he current amount selected to pay the fee, then
// continue to grab more coins.
reqFee := btcutil.Amount(txSize * int(feeRate))
if amtSelected-reqFee < amt {
continue
}
// If we have any change left over and we should create a change
// output, then add an additional output to the transaction
// reserved for it.
changeVal := amtSelected - amt - reqFee
if changeVal > 0 && change {
addr, err := m.newAddress()
if err != nil {
return err
}
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
changeOutput := &wire.TxOut{
Value: int64(changeVal),
PkScript: pkScript,
}
tx.AddTxOut(changeOutput)
}
return nil
}
// If we've reached this point, then coin selection failed due to an
// insufficient amount of coins.
return fmt.Errorf("not enough funds for coin selection")
}
// SendOutputs creates, then sends a transaction paying to the specified output
// while observing the passed fee rate. The passed fee rate should be expressed
// in satoshis-per-byte.
func (m *memWallet) SendOutputs(outputs []*wire.TxOut,
feeRate btcutil.Amount) (*chainhash.Hash, error) {
tx, err := m.CreateTransaction(outputs, feeRate, true)
if err != nil {
return nil, err
}
return m.rpc.SendRawTransaction(tx, true)
}
// SendOutputsWithoutChange creates and sends a transaction that pays to the
// specified outputs while observing the passed fee rate and ignoring a change
// output. The passed fee rate should be expressed in sat/b.
func (m *memWallet) SendOutputsWithoutChange(outputs []*wire.TxOut,
feeRate btcutil.Amount) (*chainhash.Hash, error) {
tx, err := m.CreateTransaction(outputs, feeRate, false)
if err != nil {
return nil, err
}
return m.rpc.SendRawTransaction(tx, true)
}
// CreateTransaction returns a fully signed transaction paying to the specified
// outputs while observing the desired fee rate. The passed fee rate should be
// expressed in satoshis-per-byte. The transaction being created can optionally
// include a change output indicated by the change boolean.
//
// This function is safe for concurrent access.
func (m *memWallet) CreateTransaction(outputs []*wire.TxOut,
feeRate btcutil.Amount, change bool) (*wire.MsgTx, error) {
m.Lock()
defer m.Unlock()
tx := wire.NewMsgTx(wire.TxVersion)
// Tally up the total amount to be sent in order to perform coin
// selection shortly below.
var outputAmt btcutil.Amount
for _, output := range outputs {
outputAmt += btcutil.Amount(output.Value)
tx.AddTxOut(output)
}
// Attempt to fund the transaction with spendable utxos.
if err := m.fundTx(tx, outputAmt, feeRate, change); err != nil {
return nil, err
}
// Populate all the selected inputs with valid sigScript for spending.
// Along the way record all outputs being spent in order to avoid a
// potential double spend.
spentOutputs := make([]*utxo, 0, len(tx.TxIn))
for i, txIn := range tx.TxIn {
outPoint := txIn.PreviousOutPoint
utxo := m.utxos[outPoint]
extendedKey, err := m.hdRoot.Derive(utxo.keyIndex)
if err != nil {
return nil, err
}
privKey, err := extendedKey.ECPrivKey()
if err != nil {
return nil, err
}
sigScript, err := txscript.SignatureScript(tx, i, utxo.pkScript,
txscript.SigHashAll, privKey, true)
if err != nil {
return nil, err
}
txIn.SignatureScript = sigScript
spentOutputs = append(spentOutputs, utxo)
}
// As these outputs are now being spent by this newly created
// transaction, mark the outputs are "locked". This action ensures
// these outputs won't be double spent by any subsequent transactions.
// These locked outputs can be freed via a call to UnlockOutputs.
for _, utxo := range spentOutputs {
utxo.isLocked = true
}
return tx, nil
}
// UnlockOutputs unlocks any outputs which were previously locked due to
// being selected to fund a transaction via the CreateTransaction method.
//
// This function is safe for concurrent access.
func (m *memWallet) UnlockOutputs(inputs []*wire.TxIn) {
m.Lock()
defer m.Unlock()
for _, input := range inputs {
utxo, ok := m.utxos[input.PreviousOutPoint]
if !ok {
continue
}
utxo.isLocked = false
}
}
// ConfirmedBalance returns the confirmed balance of the wallet.
//
// This function is safe for concurrent access.
func (m *memWallet) ConfirmedBalance() btcutil.Amount {
m.RLock()
defer m.RUnlock()
var balance btcutil.Amount
for _, utxo := range m.utxos {
// Prevent any immature or locked outputs from contributing to
// the wallet's total confirmed balance.
if !utxo.isMature(m.currentHeight) || utxo.isLocked {
continue
}
balance += utxo.value
}
return balance
}
// keyToAddr maps the passed private to corresponding p2pkh address.
func keyToAddr(key *btcec.PrivateKey, net *chaincfg.Params) (btcutil.Address, error) {
serializedKey := key.PubKey().SerializeCompressed()
pubKeyAddr, err := btcutil.NewAddressPubKey(serializedKey, net)
if err != nil {
return nil, err
}
return pubKeyAddr.AddressPubKeyHash(), nil
}