lbcd/common.go
Dave Collins dd70618cc1 Export CommandSize constant.
This commit exports the CommandSize constant to provide callers with the
ability to know the size of the command field in a bitcoin message header.
2014-07-12 17:35:14 -05:00

534 lines
11 KiB
Go

// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcwire
import (
"crypto/rand"
"encoding/binary"
"fmt"
"io"
"math"
"github.com/conformal/fastsha256"
)
// Maximum payload size for a variable length integer.
const MaxVarIntPayload = 9
// readElement reads the next sequence of bytes from r using little endian
// depending on the concrete type of element pointed to.
func readElement(r io.Reader, element interface{}) error {
var scratch [8]byte
// Attempt to read the element based on the concrete type via fast
// type assertions first.
switch e := element.(type) {
case *int32:
b := scratch[0:4]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = int32(binary.LittleEndian.Uint32(b))
return nil
case *uint32:
b := scratch[0:4]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = binary.LittleEndian.Uint32(b)
return nil
case *int64:
b := scratch[0:8]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = int64(binary.LittleEndian.Uint64(b))
return nil
case *uint64:
b := scratch[0:8]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = binary.LittleEndian.Uint64(b)
return nil
case *bool:
b := scratch[0:1]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
if b[0] == 0x00 {
*e = false
} else {
*e = true
}
return nil
// Message header checksum.
case *[4]byte:
_, err := io.ReadFull(r, e[:])
if err != nil {
return err
}
return nil
// Message header command.
case *[CommandSize]uint8:
_, err := io.ReadFull(r, e[:])
if err != nil {
return err
}
return nil
// IP address.
case *[16]byte:
_, err := io.ReadFull(r, e[:])
if err != nil {
return err
}
return nil
case *ShaHash:
_, err := io.ReadFull(r, e[:])
if err != nil {
return err
}
return nil
case *ServiceFlag:
b := scratch[0:8]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = ServiceFlag(binary.LittleEndian.Uint64(b))
return nil
case *InvType:
b := scratch[0:4]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = InvType(binary.LittleEndian.Uint32(b))
return nil
case *BitcoinNet:
b := scratch[0:4]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = BitcoinNet(binary.LittleEndian.Uint32(b))
return nil
case *BloomUpdateType:
b := scratch[0:1]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = BloomUpdateType(b[0])
return nil
case *RejectCode:
b := scratch[0:1]
_, err := io.ReadFull(r, b)
if err != nil {
return err
}
*e = RejectCode(b[0])
return nil
}
// Fall back to the slower binary.Read if a fast path was not available
// above.
return binary.Read(r, binary.LittleEndian, element)
}
// readElements reads multiple items from r. It is equivalent to multiple
// calls to readElement.
func readElements(r io.Reader, elements ...interface{}) error {
for _, element := range elements {
err := readElement(r, element)
if err != nil {
return err
}
}
return nil
}
// writeElement writes the little endian representation of element to w.
func writeElement(w io.Writer, element interface{}) error {
var scratch [8]byte
// Attempt to write the element based on the concrete type via fast
// type assertions first.
switch e := element.(type) {
case int32:
b := scratch[0:4]
binary.LittleEndian.PutUint32(b, uint32(e))
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case uint32:
b := scratch[0:4]
binary.LittleEndian.PutUint32(b, e)
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case int64:
b := scratch[0:8]
binary.LittleEndian.PutUint64(b, uint64(e))
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case uint64:
b := scratch[0:8]
binary.LittleEndian.PutUint64(b, e)
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case bool:
b := scratch[0:1]
if e == true {
b[0] = 0x01
} else {
b[0] = 0x00
}
_, err := w.Write(b)
if err != nil {
return err
}
return nil
// Message header checksum.
case [4]byte:
_, err := w.Write(e[:])
if err != nil {
return err
}
return nil
// Message header command.
case [CommandSize]uint8:
_, err := w.Write(e[:])
if err != nil {
return err
}
return nil
// IP address.
case [16]byte:
_, err := w.Write(e[:])
if err != nil {
return err
}
return nil
case *ShaHash:
_, err := w.Write(e[:])
if err != nil {
return err
}
return nil
case ServiceFlag:
b := scratch[0:8]
binary.LittleEndian.PutUint64(b, uint64(e))
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case InvType:
b := scratch[0:4]
binary.LittleEndian.PutUint32(b, uint32(e))
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case BitcoinNet:
b := scratch[0:4]
binary.LittleEndian.PutUint32(b, uint32(e))
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case BloomUpdateType:
b := scratch[0:1]
b[0] = uint8(e)
_, err := w.Write(b)
if err != nil {
return err
}
return nil
case RejectCode:
b := scratch[0:1]
b[0] = uint8(e)
_, err := w.Write(b)
if err != nil {
return err
}
return nil
}
// Fall back to the slower binary.Write if a fast path was not available
// above.
return binary.Write(w, binary.LittleEndian, element)
}
// writeElements writes multiple items to w. It is equivalent to multiple
// calls to writeElement.
func writeElements(w io.Writer, elements ...interface{}) error {
for _, element := range elements {
err := writeElement(w, element)
if err != nil {
return err
}
}
return nil
}
// readVarInt reads a variable length integer from r and returns it as a uint64.
func readVarInt(r io.Reader, pver uint32) (uint64, error) {
var b [8]byte
_, err := io.ReadFull(r, b[0:1])
if err != nil {
return 0, err
}
var rv uint64
discriminant := uint8(b[0])
switch discriminant {
case 0xff:
_, err := io.ReadFull(r, b[:])
if err != nil {
return 0, err
}
rv = binary.LittleEndian.Uint64(b[:])
case 0xfe:
_, err := io.ReadFull(r, b[0:4])
if err != nil {
return 0, err
}
rv = uint64(binary.LittleEndian.Uint32(b[:]))
case 0xfd:
_, err := io.ReadFull(r, b[0:2])
if err != nil {
return 0, err
}
rv = uint64(binary.LittleEndian.Uint16(b[:]))
default:
rv = uint64(discriminant)
}
return rv, nil
}
// writeVarInt serializes val to w using a variable number of bytes depending
// on its value.
func writeVarInt(w io.Writer, pver uint32, val uint64) error {
if val < 0xfd {
_, err := w.Write([]byte{uint8(val)})
return err
}
if val <= math.MaxUint16 {
var buf [3]byte
buf[0] = 0xfd
binary.LittleEndian.PutUint16(buf[1:], uint16(val))
_, err := w.Write(buf[:])
return err
}
if val <= math.MaxUint32 {
var buf [5]byte
buf[0] = 0xfe
binary.LittleEndian.PutUint32(buf[1:], uint32(val))
_, err := w.Write(buf[:])
return err
}
var buf [9]byte
buf[0] = 0xff
binary.LittleEndian.PutUint64(buf[1:], val)
_, err := w.Write(buf[:])
return err
}
// VarIntSerializeSize returns the number of bytes it would take to serialize
// val as a variable length integer.
func VarIntSerializeSize(val uint64) int {
// The value is small enough to be represented by itself, so it's
// just 1 byte.
if val < 0xfd {
return 1
}
// Discriminant 1 byte plus 2 bytes for the uint16.
if val <= math.MaxUint16 {
return 3
}
// Discriminant 1 byte plus 4 bytes for the uint32.
if val <= math.MaxUint32 {
return 5
}
// Discriminant 1 byte plus 8 bytes for the uint64.
return 9
}
// readVarString reads a variable length string from r and returns it as a Go
// string. A varString is encoded as a varInt containing the length of the
// string, and the bytes that represent the string itself. An error is returned
// if the length is greater than the maximum block payload size, since it would
// not be possible to put a varString of that size into a block anyways and it
// also helps protect against memory exhaustion attacks and forced panics
// through malformed messages.
func readVarString(r io.Reader, pver uint32) (string, error) {
count, err := readVarInt(r, pver)
if err != nil {
return "", err
}
// Prevent variable length strings that are larger than the maximum
// message size. It would be possible to cause memory exhaustion and
// panics without a sane upper bound on this count.
if count > MaxMessagePayload {
str := fmt.Sprintf("variable length string is too long "+
"[count %d, max %d]", count, MaxMessagePayload)
return "", messageError("readVarString", str)
}
buf := make([]byte, count)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err
}
return string(buf), nil
}
// writeVarString serializes str to w as a varInt containing the length of the
// string followed by the bytes that represent the string itself.
func writeVarString(w io.Writer, pver uint32, str string) error {
err := writeVarInt(w, pver, uint64(len(str)))
if err != nil {
return err
}
_, err = w.Write([]byte(str))
if err != nil {
return err
}
return nil
}
// readVarBytes reads a variable length byte array. A byte array is encoded
// as a varInt containing the length of the array followed by the bytes
// themselves. An error is returned if the length is greater than the
// passed maxAllowed parameter which helps protect against memory exhuastion
// attacks and forced panics thorugh malformed messages. The fieldName
// parameter is only used for the error message so it provides more context in
// the error.
func readVarBytes(r io.Reader, pver uint32, maxAllowed uint32,
fieldName string) ([]byte, error) {
count, err := readVarInt(r, pver)
if err != nil {
return nil, err
}
// Prevent byte array larger than the max message size. It would
// be possible to cause memory exhaustion and panics without a sane
// upper bound on this count.
if count > uint64(maxAllowed) {
str := fmt.Sprintf("%s is larger than the max allowed size "+
"[count %d, max %d]", fieldName, count, maxAllowed)
return nil, messageError("readVarBytes", str)
}
b := make([]byte, count)
_, err = io.ReadFull(r, b)
if err != nil {
return nil, err
}
return b, nil
}
// writeVarInt serializes a variable length byte array to w as a varInt
// containing the number of bytes, followed by the bytes themselves.
func writeVarBytes(w io.Writer, pver uint32, bytes []byte) error {
slen := uint64(len(bytes))
err := writeVarInt(w, pver, slen)
if err != nil {
return err
}
_, err = w.Write(bytes)
if err != nil {
return err
}
return nil
}
// randomUint64 returns a cryptographically random uint64 value. This
// unexported version takes a reader primarily to ensure the error paths
// can be properly tested by passing a fake reader in the tests.
func randomUint64(r io.Reader) (uint64, error) {
var b [8]byte
n, err := r.Read(b[:])
if n != len(b) {
return 0, io.ErrShortBuffer
}
if err != nil {
return 0, err
}
return binary.BigEndian.Uint64(b[:]), nil
}
// RandomUint64 returns a cryptographically random uint64 value.
func RandomUint64() (uint64, error) {
return randomUint64(rand.Reader)
}
// DoubleSha256 calculates sha256(sha256(b)) and returns the resulting bytes.
func DoubleSha256(b []byte) []byte {
hasher := fastsha256.New()
hasher.Write(b)
sum := hasher.Sum(nil)
hasher.Reset()
hasher.Write(sum)
return hasher.Sum(nil)
}