lbcd/mining.go
2015-01-15 10:30:38 -06:00

862 lines
33 KiB
Go

// Copyright (c) 2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/heap"
"container/list"
"fmt"
"time"
"github.com/btcsuite/btcutil"
"github.com/conformal/btcchain"
"github.com/conformal/btcdb"
"github.com/conformal/btcscript"
"github.com/conformal/btcwire"
)
const (
// generatedBlockVersion is the version of the block being generated.
// It is defined as a constant here rather than using the
// btcwire.BlockVersion constant since a change in the block version
// will require changes to the generated block. Using the btcwire
// constant for generated block version could allow creation of invalid
// blocks for the updated version.
generatedBlockVersion = 2
// minHighPriority is the minimum priority value that allows a
// transaction to be considered high priority.
minHighPriority = btcutil.SatoshiPerBitcoin * 144.0 / 250
// blockHeaderOverhead is the max number of bytes it takes to serialize
// a block header and max possible transaction count.
blockHeaderOverhead = btcwire.MaxBlockHeaderPayload + btcwire.MaxVarIntPayload
// coinbaseFlags is added to the coinbase script of a generated block
// and is used to monitor BIP16 support as well as blocks that are
// generated via btcd.
coinbaseFlags = "/P2SH/btcd/"
// standardScriptVerifyFlags are the script flags which are used when
// executing transaction scripts to enforce additional checks which
// are required for the script to be considered standard. These checks
// help reduce issues related to transaction malleability as well as
// allow pay-to-script hash transactions. Note these flags are
// different than what is required for the consensus rules in that they
// are more strict.
standardScriptVerifyFlags = btcscript.ScriptBip16 |
btcscript.ScriptCanonicalSignatures |
btcscript.ScriptStrictMultiSig
)
// txPrioItem houses a transaction along with extra information that allows the
// transaction to be prioritized and track dependencies on other transactions
// which have not been mined into a block yet.
type txPrioItem struct {
tx *btcutil.Tx
fee int64
priority float64
feePerKB float64
// dependsOn holds a map of transaction hashes which this one depends
// on. It will only be set when the transaction references other
// transactions in the memory pool and hence must come after them in
// a block.
dependsOn map[btcwire.ShaHash]struct{}
}
// txPriorityQueueLessFunc describes a function that can be used as a compare
// function for a transaction priority queue (txPriorityQueue).
type txPriorityQueueLessFunc func(*txPriorityQueue, int, int) bool
// txPriorityQueue implements a priority queue of txPrioItem elements that
// supports an arbitrary compare function as defined by txPriorityQueueLessFunc.
type txPriorityQueue struct {
lessFunc txPriorityQueueLessFunc
items []*txPrioItem
}
// Len returns the number of items in the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Len() int {
return len(pq.items)
}
// Less returns whether the item in the priority queue with index i should sort
// before the item with index j by deferring to the assigned less function. It
// is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Less(i, j int) bool {
return pq.lessFunc(pq, i, j)
}
// Swap swaps the items at the passed indices in the priority queue. It is
// part of the heap.Interface implementation.
func (pq *txPriorityQueue) Swap(i, j int) {
pq.items[i], pq.items[j] = pq.items[j], pq.items[i]
}
// Push pushes the passed item onto the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Push(x interface{}) {
pq.items = append(pq.items, x.(*txPrioItem))
}
// Pop removes the highest priority item (according to Less) from the priority
// queue and returns it. It is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Pop() interface{} {
n := len(pq.items)
item := pq.items[n-1]
pq.items[n-1] = nil
pq.items = pq.items[0 : n-1]
return item
}
// SetLessFunc sets the compare function for the priority queue to the provided
// function. It also invokes heap.Init on the priority queue using the new
// function so it can immediately be used with heap.Push/Pop.
func (pq *txPriorityQueue) SetLessFunc(lessFunc txPriorityQueueLessFunc) {
pq.lessFunc = lessFunc
heap.Init(pq)
}
// txPQByPriority sorts a txPriorityQueue by transaction priority and then fees
// per kilobyte.
func txPQByPriority(pq *txPriorityQueue, i, j int) bool {
// Using > here so that pop gives the highest priority item as opposed
// to the lowest. Sort by priority first, then fee.
if pq.items[i].priority == pq.items[j].priority {
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
return pq.items[i].priority > pq.items[j].priority
}
// txPQByFee sorts a txPriorityQueue by fees per kilobyte and then transaction
// priority.
func txPQByFee(pq *txPriorityQueue, i, j int) bool {
// Using > here so that pop gives the highest fee item as opposed
// to the lowest. Sort by fee first, then priority.
if pq.items[i].feePerKB == pq.items[j].feePerKB {
return pq.items[i].priority > pq.items[j].priority
}
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
// newTxPriorityQueue returns a new transaction priority queue that reserves the
// passed amount of space for the elements. The new priority queue uses either
// the txPQByPriority or the txPQByFee compare function depending on the
// sortByFee parameter and is already initialized for use with heap.Push/Pop.
// The priority queue can grow larger than the reserved space, but extra copies
// of the underlying array can be avoided by reserving a sane value.
func newTxPriorityQueue(reserve int, sortByFee bool) *txPriorityQueue {
pq := &txPriorityQueue{
items: make([]*txPrioItem, 0, reserve),
}
if sortByFee {
pq.SetLessFunc(txPQByFee)
} else {
pq.SetLessFunc(txPQByPriority)
}
return pq
}
// BlockTemplate houses a block that has yet to be solved along with additional
// details about the fees and the number of signature operations for each
// transaction in the block.
type BlockTemplate struct {
block *btcwire.MsgBlock
fees []int64
sigOpCounts []int64
height int64
validPayAddress bool
}
// minInt is a helper function to return the minimum of two ints. This avoids
// a math import and the need to cast to floats.
func minInt(a, b int) int {
if a < b {
return a
}
return b
}
// mergeTxStore adds all of the transactions in txStoreB to txStoreA. The
// result is that txStoreA will contain all of its original transactions plus
// all of the transactions in txStoreB.
func mergeTxStore(txStoreA btcchain.TxStore, txStoreB btcchain.TxStore) {
for hash, txDataB := range txStoreB {
if txDataA, exists := txStoreA[hash]; !exists ||
(txDataA.Err == btcdb.ErrTxShaMissing && txDataB.Err !=
btcdb.ErrTxShaMissing) {
txStoreA[hash] = txDataB
}
}
}
// standardCoinbaseScript returns a standard script suitable for use as the
// signature script of the coinbase transaction of a new block. In particular,
// it starts with the block height that is required by version 2 blocks and adds
// the extra nonce as well as additional coinbase flags.
func standardCoinbaseScript(nextBlockHeight int64, extraNonce uint64) []byte {
return btcscript.NewScriptBuilder().AddInt64(nextBlockHeight).
AddUint64(extraNonce).AddData([]byte(coinbaseFlags)).Script()
}
// createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy
// based on the passed block height to the provided address. When the address
// is nil, the coinbase transaction will instead be redeemable by anyone.
//
// See the comment for NewBlockTemplate for more information about why the nil
// address handling is useful.
func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int64, addr btcutil.Address) (*btcutil.Tx, error) {
// Create the script to pay to the provided payment address if one was
// specified. Otherwise create a script that allows the coinbase to be
// redeemable by anyone.
var pkScript []byte
if addr != nil {
var err error
pkScript, err = btcscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
} else {
scriptBuilder := btcscript.NewScriptBuilder()
pkScript = scriptBuilder.AddOp(btcscript.OP_TRUE).Script()
}
tx := btcwire.NewMsgTx()
tx.AddTxIn(&btcwire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *btcwire.NewOutPoint(&btcwire.ShaHash{},
btcwire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: btcwire.MaxTxInSequenceNum,
})
tx.AddTxOut(&btcwire.TxOut{
Value: btcchain.CalcBlockSubsidy(nextBlockHeight,
activeNetParams.Params),
PkScript: pkScript,
})
return btcutil.NewTx(tx), nil
}
// calcPriority returns a transaction priority given a transaction and the sum
// of each of its input values multiplied by their age (# of confirmations).
// Thus, the final formula for the priority is:
// sum(inputValue * inputAge) / adjustedTxSize
func calcPriority(tx *btcutil.Tx, serializedTxSize int, inputValueAge float64) float64 {
// In order to encourage spending multiple old unspent transaction
// outputs thereby reducing the total set, don't count the constant
// overhead for each input as well as enough bytes of the signature
// script to cover a pay-to-script-hash redemption with a compressed
// pubkey. This makes additional inputs free by boosting the priority
// of the transaction accordingly. No more incentive is given to avoid
// encouraging gaming future transactions through the use of junk
// outputs. This is the same logic used in the reference
// implementation.
//
// The constant overhead for a txin is 41 bytes since the previous
// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
// signature script length.
//
// A compressed pubkey pay-to-script-hash redemption with a maximum len
// signature is of the form:
// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
// <33 byte compresed pubkey> + OP_CHECKSIG}]
//
// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
overhead := 0
for _, txIn := range tx.MsgTx().TxIn {
// Max inputs + size can't possibly overflow here.
overhead += 41 + minInt(110, len(txIn.SignatureScript))
}
if overhead >= serializedTxSize {
return 0.0
}
return inputValueAge / float64(serializedTxSize-overhead)
}
// spendTransaction updates the passed transaction store by marking the inputs
// to the passed transaction as spent. It also adds the passed transaction to
// the store at the provided height.
func spendTransaction(txStore btcchain.TxStore, tx *btcutil.Tx, height int64) error {
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
if originTx, exists := txStore[*originHash]; exists {
originTx.Spent[originIndex] = true
}
}
txStore[*tx.Sha()] = &btcchain.TxData{
Tx: tx,
Hash: tx.Sha(),
BlockHeight: height,
Spent: make([]bool, len(tx.MsgTx().TxOut)),
Err: nil,
}
return nil
}
// logSkippedDeps logs any dependencies which are also skipped as a result of
// skipping a transaction while generating a block template at the trace level.
func logSkippedDeps(tx *btcutil.Tx, deps *list.List) {
if deps == nil {
return
}
for e := deps.Front(); e != nil; e = e.Next() {
item := e.Value.(*txPrioItem)
minrLog.Tracef("Skipping tx %s since it depends on %s\n",
item.tx.Sha(), tx.Sha())
}
}
// minimumMedianTime returns the minimum allowed timestamp for a block building
// on the end of the current best chain. In particular, it is one second after
// the median timestamp of the last several blocks per the chain consensus
// rules.
func minimumMedianTime(chainState *chainState) (time.Time, error) {
chainState.Lock()
defer chainState.Unlock()
if chainState.pastMedianTimeErr != nil {
return time.Time{}, chainState.pastMedianTimeErr
}
return chainState.pastMedianTime.Add(time.Second), nil
}
// medianAdjustedTime returns the current time adjusted to ensure it is at least
// one second after the median timestamp of the last several blocks per the
// chain consensus rules.
func medianAdjustedTime(chainState *chainState) (time.Time, error) {
chainState.Lock()
defer chainState.Unlock()
if chainState.pastMedianTimeErr != nil {
return time.Time{}, chainState.pastMedianTimeErr
}
// The timestamp for the block must not be before the median timestamp
// of the last several blocks. Thus, choose the maximum between the
// current time and one second after the past median time. The current
// timestamp is truncated to a second boundary before comparison since a
// block timestamp does not supported a precision greater than one
// second.
newTimestamp := time.Unix(time.Now().Unix(), 0)
minTimestamp := chainState.pastMedianTime.Add(time.Second)
if newTimestamp.Before(minTimestamp) {
newTimestamp = minTimestamp
}
return newTimestamp, nil
}
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction memory pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil. The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template. Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors. First, each transaction has a priority calculated based on its
// value, age of inputs, and size. Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority. Second, a
// fee per kilobyte is calculated for each transaction. Transactions with a
// higher fee per kilobyte are preferred. Finally, the block generation related
// configuration options are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// configuration option allots space for high-priority transactions.
// Transactions which spend outputs from other transactions in the memory pool
// are added to a dependency map so they can be added to the priority queue once
// the transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with transactions,
// or the priority falls below what is considered high-priority, the priority
// queue is updated to prioritize by fees per kilobyte (then priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee configuration option,
// the transaction will be skipped unless there is a BlockMinSize set, in which
// case the block will be filled with the low-fee/free transactions until the
// block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// configuration option, exceed the maximum allowed signature operations per
// block, or otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
// ----------------------------------- -- --
// | Coinbase Transaction | | |
// |-----------------------------------| | |
// | | | | ----- cfg.BlockPrioritySize
// | High-priority Transactions | | |
// | | | |
// |-----------------------------------| | --
// | | |
// | | |
// | | |--- cfg.BlockMaxSize
// | Transactions prioritized by fee | |
// | until <= cfg.TxMinFreeFee | |
// | | |
// | | |
// | | |
// |-----------------------------------| |
// | Low-fee/Non high-priority (free) | |
// | transactions (while block size | |
// | <= cfg.BlockMinSize) | |
// ----------------------------------- --
func NewBlockTemplate(mempool *txMemPool, payToAddress btcutil.Address) (*BlockTemplate, error) {
blockManager := mempool.server.blockManager
chainState := &blockManager.chainState
chain := blockManager.blockChain
// Extend the most recently known best block.
chainState.Lock()
prevHash := chainState.newestHash
nextBlockHeight := chainState.newestHeight + 1
chainState.Unlock()
// Create a standard coinbase transaction paying to the provided
// address. NOTE: The coinbase value will be updated to include the
// fees from the selected transactions later after they have actually
// been selected. It is created here to detect any errors early
// before potentially doing a lot of work below. The extra nonce helps
// ensure the transaction is not a duplicate transaction (paying the
// same value to the same public key address would otherwise be an
// identical transaction for block version 1).
extraNonce := uint64(0)
coinbaseScript := standardCoinbaseScript(nextBlockHeight, extraNonce)
coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight,
payToAddress)
if err != nil {
return nil, err
}
numCoinbaseSigOps := int64(btcchain.CountSigOps(coinbaseTx))
// Get the current memory pool transactions and create a priority queue
// to hold the transactions which are ready for inclusion into a block
// along with some priority related and fee metadata. Reserve the same
// number of items that are in the memory pool for the priority queue.
// Also, choose the initial sort order for the priority queue based on
// whether or not there is an area allocated for high-priority
// transactions.
mempoolTxns := mempool.TxDescs()
sortedByFee := cfg.BlockPrioritySize == 0
priorityQueue := newTxPriorityQueue(len(mempoolTxns), sortedByFee)
// Create a slice to hold the transactions to be included in the
// generated block with reserved space. Also create a transaction
// store to house all of the input transactions so multiple lookups
// can be avoided.
blockTxns := make([]*btcutil.Tx, 0, len(mempoolTxns))
blockTxns = append(blockTxns, coinbaseTx)
blockTxStore := make(btcchain.TxStore)
// dependers is used to track transactions which depend on another
// transaction in the memory pool. This, in conjunction with the
// dependsOn map kept with each dependent transaction helps quickly
// determine which dependent transactions are now eligible for inclusion
// in the block once each transaction has been included.
dependers := make(map[btcwire.ShaHash]*list.List)
// Create slices to hold the fees and number of signature operations
// for each of the selected transactions and add an entry for the
// coinbase. This allows the code below to simply append details about
// a transaction as it is selected for inclusion in the final block.
// However, since the total fees aren't known yet, use a dummy value for
// the coinbase fee which will be updated later.
txFees := make([]int64, 0, len(mempoolTxns))
txSigOpCounts := make([]int64, 0, len(mempoolTxns))
txFees = append(txFees, -1) // Updated once known
txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps)
minrLog.Debugf("Considering %d mempool transactions for inclusion to "+
"new block", len(mempoolTxns))
mempoolLoop:
for _, txDesc := range mempoolTxns {
// A block can't have more than one coinbase or contain
// non-finalized transactions.
tx := txDesc.Tx
if btcchain.IsCoinBase(tx) {
minrLog.Tracef("Skipping coinbase tx %s", tx.Sha())
continue
}
if !btcchain.IsFinalizedTransaction(tx, nextBlockHeight, time.Now()) {
minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha())
continue
}
// Fetch all of the transactions referenced by the inputs to
// this transaction. NOTE: This intentionally does not fetch
// inputs from the mempool since a transaction which depends on
// other transactions in the mempool must come after those
// dependencies in the final generated block.
txStore, err := chain.FetchTransactionStore(tx)
if err != nil {
minrLog.Warnf("Unable to fetch transaction store for "+
"tx %s: %v", tx.Sha(), err)
continue
}
// Setup dependencies for any transactions which reference
// other transactions in the mempool so they can be properly
// ordered below.
prioItem := &txPrioItem{tx: txDesc.Tx}
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
txData, exists := txStore[*originHash]
if !exists || txData.Err != nil || txData.Tx == nil {
if !mempool.HaveTransaction(originHash) {
minrLog.Tracef("Skipping tx %s because "+
"it references tx %s which is "+
"not available", tx.Sha,
originHash)
continue mempoolLoop
}
// The transaction is referencing another
// transaction in the memory pool, so setup an
// ordering dependency.
depList, exists := dependers[*originHash]
if !exists {
depList = list.New()
dependers[*originHash] = depList
}
depList.PushBack(prioItem)
if prioItem.dependsOn == nil {
prioItem.dependsOn = make(
map[btcwire.ShaHash]struct{})
}
prioItem.dependsOn[*originHash] = struct{}{}
// Skip the check below. We already know the
// referenced transaction is available.
continue
}
// Ensure the output index in the referenced transaction
// is available.
msgTx := txData.Tx.MsgTx()
if originIndex > uint32(len(msgTx.TxOut)) {
minrLog.Tracef("Skipping tx %s because "+
"it references output %d of tx %s "+
"which is out of bounds", tx.Sha,
originIndex, originHash)
continue mempoolLoop
}
}
// Calculate the final transaction priority using the input
// value age sum as well as the adjusted transaction size. The
// formula is: sum(inputValue * inputAge) / adjustedTxSize
prioItem.priority = txDesc.CurrentPriority(txStore, nextBlockHeight)
// Calculate the fee in Satoshi/KB.
// NOTE: This is a more precise value than the one calculated
// during calcMinRelayFee which rounds up to the nearest full
// kilobyte boundary. This is beneficial since it provides an
// incentive to create smaller transactions.
txSize := tx.MsgTx().SerializeSize()
prioItem.feePerKB = float64(txDesc.Fee) / (float64(txSize) / 1000)
prioItem.fee = txDesc.Fee
// Add the transaction to the priority queue to mark it ready
// for inclusion in the block unless it has dependencies.
if prioItem.dependsOn == nil {
heap.Push(priorityQueue, prioItem)
}
// Merge the store which contains all of the input transactions
// for this transaction into the input transaction store. This
// allows the code below to avoid a second lookup.
mergeTxStore(blockTxStore, txStore)
}
minrLog.Tracef("Priority queue len %d, dependers len %d",
priorityQueue.Len(), len(dependers))
// The starting block size is the size of the block header plus the max
// possible transaction count size, plus the size of the coinbase
// transaction.
blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize())
blockSigOps := numCoinbaseSigOps
totalFees := int64(0)
// Choose which transactions make it into the block.
for priorityQueue.Len() > 0 {
// Grab the highest priority (or highest fee per kilobyte
// depending on the sort order) transaction.
prioItem := heap.Pop(priorityQueue).(*txPrioItem)
tx := prioItem.tx
// Grab the list of transactions which depend on this one (if
// any) and remove the entry for this transaction as it will
// either be included or skipped, but in either case the deps
// are no longer needed.
deps := dependers[*tx.Sha()]
delete(dependers, *tx.Sha())
// Enforce maximum block size. Also check for overflow.
txSize := uint32(tx.MsgTx().SerializeSize())
blockPlusTxSize := blockSize + txSize
if blockPlusTxSize < blockSize || blockPlusTxSize >= cfg.BlockMaxSize {
minrLog.Tracef("Skipping tx %s because it would exceed "+
"the max block size", tx.Sha())
logSkippedDeps(tx, deps)
continue
}
// Enforce maximum signature operations per block. Also check
// for overflow.
numSigOps := int64(btcchain.CountSigOps(tx))
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock {
minrLog.Tracef("Skipping tx %s because it would "+
"exceed the maximum sigops per block", tx.Sha())
logSkippedDeps(tx, deps)
continue
}
numP2SHSigOps, err := btcchain.CountP2SHSigOps(tx, false,
blockTxStore)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"CountP2SHSigOps: %v", tx.Sha(), err)
logSkippedDeps(tx, deps)
continue
}
numSigOps += int64(numP2SHSigOps)
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock {
minrLog.Tracef("Skipping tx %s because it would "+
"exceed the maximum sigops per block (p2sh)",
tx.Sha())
logSkippedDeps(tx, deps)
continue
}
// Skip free transactions once the block is larger than the
// minimum block size.
if sortedByFee && prioItem.feePerKB < minTxRelayFee &&
blockPlusTxSize >= cfg.BlockMinSize {
minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+
"< minTxRelayFee %d and block size %d >= "+
"minBlockSize %d", tx.Sha(), prioItem.feePerKB,
minTxRelayFee, blockPlusTxSize,
cfg.BlockMinSize)
logSkippedDeps(tx, deps)
continue
}
// Prioritize by fee per kilobyte once the block is larger than
// the priority size or there are no more high-priority
// transactions.
if !sortedByFee && (blockPlusTxSize >= cfg.BlockPrioritySize ||
prioItem.priority <= minHighPriority) {
minrLog.Tracef("Switching to sort by fees per "+
"kilobyte blockSize %d >= BlockPrioritySize "+
"%d || priority %.2f <= minHighPriority %.2f",
blockPlusTxSize, cfg.BlockPrioritySize,
prioItem.priority, minHighPriority)
sortedByFee = true
priorityQueue.SetLessFunc(txPQByFee)
// Put the transaction back into the priority queue and
// skip it so it is re-priortized by fees if it won't
// fit into the high-priority section or the priority is
// too low. Otherwise this transaction will be the
// final one in the high-priority section, so just fall
// though to the code below so it is added now.
if blockPlusTxSize > cfg.BlockPrioritySize ||
prioItem.priority < minHighPriority {
heap.Push(priorityQueue, prioItem)
continue
}
}
// Ensure the transaction inputs pass all of the necessary
// preconditions before allowing it to be added to the block.
_, err = btcchain.CheckTransactionInputs(tx, nextBlockHeight,
blockTxStore)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"CheckTransactionInputs: %v", tx.Sha(), err)
logSkippedDeps(tx, deps)
continue
}
err = btcchain.ValidateTransactionScripts(tx, blockTxStore,
standardScriptVerifyFlags)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"ValidateTransactionScripts: %v", tx.Sha(), err)
logSkippedDeps(tx, deps)
continue
}
// Spend the transaction inputs in the block transaction store
// and add an entry for it to ensure any transactions which
// reference this one have it available as an input and can
// ensure they aren't double spending.
spendTransaction(blockTxStore, tx, nextBlockHeight)
// Add the transaction to the block, increment counters, and
// save the fees and signature operation counts to the block
// template.
blockTxns = append(blockTxns, tx)
blockSize += txSize
blockSigOps += numSigOps
totalFees += prioItem.fee
txFees = append(txFees, prioItem.fee)
txSigOpCounts = append(txSigOpCounts, numSigOps)
minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)",
prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB)
// Add transactions which depend on this one (and also do not
// have any other unsatisified dependencies) to the priority
// queue.
if deps != nil {
for e := deps.Front(); e != nil; e = e.Next() {
// Add the transaction to the priority queue if
// there are no more dependencies after this
// one.
item := e.Value.(*txPrioItem)
delete(item.dependsOn, *tx.Sha())
if len(item.dependsOn) == 0 {
heap.Push(priorityQueue, item)
}
}
}
}
// Now that the actual transactions have been selected, update the
// block size for the real transaction count and coinbase value with
// the total fees accordingly.
blockSize -= btcwire.MaxVarIntPayload -
uint32(btcwire.VarIntSerializeSize(uint64(len(blockTxns))))
coinbaseTx.MsgTx().TxOut[0].Value += totalFees
txFees[0] = -totalFees
// Calculate the required difficulty for the block. The timestamp
// is potentially adjusted to ensure it comes after the median time of
// the last several blocks per the chain consensus rules.
ts, err := medianAdjustedTime(chainState)
if err != nil {
return nil, err
}
requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts)
if err != nil {
return nil, err
}
// Create a new block ready to be solved.
merkles := btcchain.BuildMerkleTreeStore(blockTxns)
var msgBlock btcwire.MsgBlock
msgBlock.Header = btcwire.BlockHeader{
Version: generatedBlockVersion,
PrevBlock: *prevHash,
MerkleRoot: *merkles[len(merkles)-1],
Timestamp: ts,
Bits: requiredDifficulty,
}
for _, tx := range blockTxns {
if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil {
return nil, err
}
}
// Finally, perform a full check on the created block against the chain
// consensus rules to ensure it properly connects to the current best
// chain with no issues.
block := btcutil.NewBlock(&msgBlock)
block.SetHeight(nextBlockHeight)
if err := blockManager.CheckConnectBlock(block); err != nil {
return nil, err
}
minrLog.Debugf("Created new block template (%d transactions, %d in "+
"fees, %d signature operations, %d bytes, target difficulty "+
"%064x)", len(msgBlock.Transactions), totalFees, blockSigOps,
blockSize, btcchain.CompactToBig(msgBlock.Header.Bits))
return &BlockTemplate{
block: &msgBlock,
fees: txFees,
sigOpCounts: txSigOpCounts,
height: nextBlockHeight,
validPayAddress: payToAddress != nil,
}, nil
}
// UpdateBlockTime updates the timestamp in the header of the passed block to
// the current time while taking into account the median time of the last
// several blocks to ensure the new time is after that time per the chain
// consensus rules. Finally, it will update the target difficulty if needed
// based on the new time for the test networks since their target difficulty can
// change based upon time.
func UpdateBlockTime(msgBlock *btcwire.MsgBlock, bManager *blockManager) error {
// The new timestamp is potentially adjusted to ensure it comes after
// the median time of the last several blocks per the chain consensus
// rules.
newTimestamp, err := medianAdjustedTime(&bManager.chainState)
if err != nil {
return err
}
msgBlock.Header.Timestamp = newTimestamp
// If running on a network that requires recalculating the difficulty,
// do so now.
if activeNetParams.ResetMinDifficulty {
difficulty, err := bManager.CalcNextRequiredDifficulty(newTimestamp)
if err != nil {
return err
}
msgBlock.Header.Bits = difficulty
}
return nil
}
// UpdateExtraNonce updates the extra nonce in the coinbase script of the passed
// block by regenerating the coinbase script with the passed value and block
// height. It also recalculates and updates the new merkle root that results
// from changing the coinbase script.
func UpdateExtraNonce(msgBlock *btcwire.MsgBlock, blockHeight int64, extraNonce uint64) error {
coinbaseScript := standardCoinbaseScript(blockHeight, extraNonce)
if len(coinbaseScript) > btcchain.MaxCoinbaseScriptLen {
return fmt.Errorf("coinbase transaction script length "+
"of %d is out of range (min: %d, max: %d)",
len(coinbaseScript), btcchain.MinCoinbaseScriptLen,
btcchain.MaxCoinbaseScriptLen)
}
msgBlock.Transactions[0].TxIn[0].SignatureScript = coinbaseScript
// TODO(davec): A btcutil.Block should use saved in the state to avoid
// recalculating all of the other transaction hashes.
// block.Transactions[0].InvalidateCache()
// Recalculate the merkle root with the updated extra nonce.
block := btcutil.NewBlock(msgBlock)
merkles := btcchain.BuildMerkleTreeStore(block.Transactions())
msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1]
return nil
}