lbcd/script.go
Dave Collins cfc2a4cc76 Add support for nulldata standard scripts.
This commit adds the new standard script type for empty, but data carrying
and provably prunable transaction scripts.

Closes #2.

ok @owainga
2013-11-14 16:20:02 -06:00

1192 lines
36 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcscript
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"github.com/conformal/btcec"
"github.com/conformal/btcwire"
"github.com/davecgh/go-spew/spew"
"io"
"math/big"
"time"
)
// StackErrShortScript is returned if the script has an opcode that is too long
// for the length of the script.
var StackErrShortScript = errors.New("execute past end of script")
// StackErrUnderflow is returned if an opcode requires more items on the stack
// than is present.
var StackErrUnderflow = errors.New("stack underflow")
// StackErrInvalidArgs is returned if the argument for an opcode is out of
// acceptable range.
var StackErrInvalidArgs = errors.New("invalid argument")
// StackErrOpDisabled is returned when a disabled opcode is encountered in the
// script.
var StackErrOpDisabled = errors.New("Disabled Opcode")
// StackErrVerifyFailed is returned when one of the OP_VERIFY or OP_*VERIFY
// instructions is executed and the conditions fails.
var StackErrVerifyFailed = errors.New("Verify failed")
// StackErrNumberTooBig is returned when the argument for an opcode that should
// be an offset is obviously far too large.
var StackErrNumberTooBig = errors.New("number too big")
// StackErrInvalidOpcode is returned when an opcode marked as invalid or a
// completely undefined opcode is encountered.
var StackErrInvalidOpcode = errors.New("Invalid Opcode")
// StackErrReservedOpcode is returned when an opcode marked as reserved is
// encountered.
var StackErrReservedOpcode = errors.New("Reserved Opcode")
// StackErrEarlyReturn is returned when OP_RETURN is executed in the script.
var StackErrEarlyReturn = errors.New("Script returned early")
// StackErrNoIf is returned if an OP_ELSE or OP_ENDIF is encountered without
// first having an OP_IF or OP_NOTIF in the script.
var StackErrNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF")
// StackErrMissingEndif is returned if the end of a script is reached without
// and OP_ENDIF to correspond to a conditional expression.
var StackErrMissingEndif = fmt.Errorf("execute fail, in conditional execution")
// StackErrTooManyPubkeys is returned if an OP_CHECKMULTISIG is encountered
// with more than MaxPubKeysPerMultiSig pubkeys present.
var StackErrTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG")
// StackErrTooManyOperations is returned if a script has more then
// MaxOpsPerScript opcodes that do not push data.
var StackErrTooManyOperations = errors.New("Too many operations in script")
// StackErrElementTooBig is returned if the size of an element to be pushed to
// the stack is over MaxScriptElementSize.
var StackErrElementTooBig = errors.New("Element in script too large")
// StackErrUnknownAddress is returned when ScriptToAddrHash does not recognise
// the pattern of the script and thus can not find the address for payment.
var StackErrUnknownAddress = errors.New("non-recognised address")
// StackErrScriptFailed is returned when at the end of a script the boolean
// on top of the stack is false signifying that the script has failed.
var StackErrScriptFailed = errors.New("execute fail, fail on stack")
// StackErrScriptUnfinished is returned when CheckErrorCondition is called
// on a script that has not finished executing.
var StackErrScriptUnfinished = errors.New("Error check when script unfinished")
// StackErrEmpyStack is returned when the stack is empty at the end of
// execution. Normal operation requires that a boolean is on top of the stack
// when the scripts have finished executing.
var StackErrEmptyStack = errors.New("Stack empty at end of execution")
// StackErrP2SHNonPushOnly is returned when a Pay-to-Script-Hash transaction
// is encountered and the ScriptSig does operations other than push data (in
// violation of bip16).
var StackErrP2SHNonPushOnly = errors.New("pay to script hash with non " +
"pushonly input")
// StackErrInvalidParseType is an internal error returned from ScriptToAddrHash
// ony if the internal data tables are wrong.
var StackErrInvalidParseType = errors.New("internal error: invalid parsetype found")
// StackErrInvalidAddrOffset is an internal error returned from ScriptToAddrHash
// ony if the internal data tables are wrong.
var StackErrInvalidAddrOffset = errors.New("internal error: invalid offset found")
// StackErrInvalidIndex is returned when an out-of-bounds index was passed to
// a function.
var StackErrInvalidIndex = errors.New("Invalid script index")
// StackErrNonPushOnly is returned when ScriptInfo is called with a pkScript
// that peforms operations other that pushing data to the stack.
var StackErrNonPushOnly = errors.New("SigScript is non pushonly")
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
// blockchain. To be used to determine if BIP0016 should be called for or not.
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
// Hash type bits from the end of a signature.
const (
SigHashOld = 0x0
SigHashAll = 0x1
SigHashNone = 0x2
SigHashSingle = 0x3
SigHashAnyOneCanPay = 0x80
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 201 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
)
// ScriptClass is an enumeration for the list of standard types of script.
type ScriptClass byte
// Classes of script payment known about in the blockchain.
const (
NonStandardTy ScriptClass = iota // None of the recognized forms.
PubKeyTy // Pay pubkey.
PubKeyHashTy // Pay pubkey hash.
ScriptHashTy // Pay to script hash.
MultiSigTy // Multi signature.
NullDataTy // Empty data-only (provably prunable).
)
var scriptClassToName = []string{
NonStandardTy: "nonstandard",
PubKeyTy: "pubkey",
PubKeyHashTy: "pubkeyhash",
ScriptHashTy: "scripthash",
MultiSigTy: "multisig",
NullDataTy: "nulldata",
}
// String implements the Stringer interface by returning the name of
// the enum script class. If the enum is invalid then "Invalid" will be
// returned.
func (t ScriptClass) String() string {
if int(t) > len(scriptClassToName) || int(t) < 0 {
return "Invalid"
}
return scriptClassToName[t]
}
// Script is the virtual machine that executes btcscripts.
type Script struct {
scripts [][]parsedOpcode
scriptidx int
scriptoff int
lastcodesep int
dstack Stack // data stack
astack Stack // alt stack
tx btcwire.MsgTx
txidx int
condStack []int
numOps int
bip16 bool // treat execution as pay-to-script-hash
der bool // enforce DER encoding
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// isPubkey returns true if the script passed is a pubkey transaction, false
// otherwise.
func isPubkey(pops []parsedOpcode) bool {
return len(pops) == 2 &&
pops[0].opcode.value > OP_FALSE &&
pops[0].opcode.value <= OP_DATA_75 &&
pops[1].opcode.value == OP_CHECKSIG
}
// isPubkeyHash returns true if the script passed is a pubkey hash transaction,
// false otherwise.
func isPubkeyHash(pops []parsedOpcode) bool {
return len(pops) == 5 &&
pops[0].opcode.value == OP_DUP &&
pops[1].opcode.value == OP_HASH160 &&
pops[2].opcode.value == OP_DATA_20 &&
pops[3].opcode.value == OP_EQUALVERIFY &&
pops[4].opcode.value == OP_CHECKSIG
}
// isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH)
// transction, false otherwise.
func isScriptHash(pops []parsedOpcode) bool {
return len(pops) == 3 &&
pops[0].opcode.value == OP_HASH160 &&
pops[1].opcode.value == OP_DATA_20 &&
pops[2].opcode.value == OP_EQUAL
}
// IsPayToScriptHash returns true if the script is in the standard
// Pay-To-Script-Hash format, false otherwise.
func IsPayToScriptHash(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isScriptHash(pops)
}
// isMultiSig returns true if the passed script is a multisig transaction, false
// otherwise.
func isMultiSig(pops []parsedOpcode) bool {
l := len(pops)
// absolute minimum is 1 pubkey so
// OP_1-16, pubkey, OP_1, OP_CHECK_MULTISIG
if l < 4 {
return false
}
if pops[0].opcode.value < OP_1 ||
pops[0].opcode.value > OP_16 {
return false
}
if pops[l-2].opcode.value < OP_1 ||
pops[l-2].opcode.value > OP_16 {
return false
}
if pops[l-1].opcode.value != OP_CHECK_MULTISIG {
return false
}
for _, pop := range pops[1 : l-2] {
// valid pubkeys are either 65 or 33 bytes
if len(pop.data) != 33 &&
len(pop.data) != 65 {
return false
}
}
return true
}
// isNullData returns true if the passed script is a null data transaction,
// false otherwise.
func isNullData(pops []parsedOpcode) bool {
// A nulldata transaction is either a single OP_RETURN or an
// OP_RETURN SMALLDATA (where SMALLDATA is a push data up to 80 bytes).
l := len(pops)
if l == 1 && pops[0].opcode.value == OP_RETURN {
return true
}
return l == 2 &&
pops[0].opcode.value == OP_RETURN &&
pops[1].opcode.value <= OP_PUSHDATA4 &&
len(pops[1].data) <= 80
}
// isPushOnly returns true if the script only pushes data, false otherwise.
func isPushOnly(pops []parsedOpcode) bool {
// technically we cheat here, we don't look at opcodes
for _, pop := range pops {
// all opcodes up to OP_16 are data instructions.
if pop.opcode.value < OP_FALSE ||
pop.opcode.value > OP_16 {
return false
}
}
return true
}
// IsPushOnlyScript returns whether or not the passed script only pushes data.
// If the script does not parse false will be returned.
func IsPushOnlyScript(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isPushOnly(pops)
}
// GetScriptClass returns the class of the script passed. If the script does not
// parse then NonStandardTy will be returned.
func GetScriptClass(script []byte) ScriptClass {
pops, err := parseScript(script)
if err != nil {
return NonStandardTy
}
return typeOfScript(pops)
}
// scriptType returns the type of the script being inspected from the known
// standard types.
func typeOfScript(pops []parsedOpcode) ScriptClass {
// XXX dubious optimisation: order these in order of popularity in the
// blockchain
if isPubkey(pops) {
return PubKeyTy
} else if isPubkeyHash(pops) {
return PubKeyHashTy
} else if isScriptHash(pops) {
return ScriptHashTy
} else if isMultiSig(pops) {
return MultiSigTy
} else if isNullData(pops) {
return NullDataTy
}
return NonStandardTy
}
// parseScript preparses the script in bytes into a list of parsedOpcodes while
// applying a number of sanity checks.
func parseScript(script []byte) ([]parsedOpcode, error) {
return parseScriptTemplate(script, opcodemap)
}
// parseScriptTemplate is the same as parseScript but allows the passing of the
// template list for testing purposes. On error we return the list of parsed
// opcodes so far.
func parseScriptTemplate(script []byte, opcodemap map[byte]*opcode) ([]parsedOpcode, error) {
retScript := make([]parsedOpcode, 0, len(script))
for i := 0; i < len(script); {
instr := script[i]
op, ok := opcodemap[instr]
if !ok {
return retScript, StackErrInvalidOpcode
}
pop := parsedOpcode{opcode: op}
// parse data out of instruction.
switch {
case op.length == 1:
// no data, done here
i++
case op.length > 1:
if len(script[i:]) < op.length {
return retScript, StackErrShortScript
}
// slice out the data.
pop.data = script[i+1 : i+op.length]
i += op.length
case op.length < 0:
var err error
var l uint
off := i + 1
switch op.length {
case -1:
l, err = scriptUInt8(script[off:])
case -2:
l, err = scriptUInt16(script[off:])
case -4:
l, err = scriptUInt32(script[off:])
default:
return retScript,
fmt.Errorf("invalid opcode length %d",
op.length)
}
if err != nil {
return nil, err
}
off = i + 1 - op.length // beginning of data
// Disallow entries that do not fit script or were
// sign extended.
if int(l) > len(script[off:]) || int(l) < 0 {
return retScript, StackErrShortScript
}
pop.data = script[off : off+int(l)]
i += 1 - op.length + int(l)
}
retScript = append(retScript, pop)
}
return retScript, nil
}
// unparseScript reversed the action of parseScript and returns the
// parsedOpcodes as a list of bytes
func unparseScript(pops []parsedOpcode) ([]byte, error) {
script := make([]byte, 0, len(pops))
for _, pop := range pops {
b, err := pop.bytes()
if err != nil {
return nil, err
}
script = append(script, b...)
}
return script, nil
}
// ScriptFlags is a bitmask defining additional operations or
// tests that will be done when executing a Script.
type ScriptFlags uint32
const (
// ScriptBip16 defines whether the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
ScriptBip16 ScriptFlags = 1 << iota
// ScriptCanonicalSignatures defines whether additional canonical
// signature checks are performed when parsing a signature.
//
// Canonical (DER) signatures are not required in the tx rules for
// block acceptance, but are checked in recent versions of bitcoind
// when accepting transactions to the mempool. Non-canonical (valid
// BER but not valid DER) transactions can potentially be changed
// before mined into a block, either by adding extra padding or
// flipping the sign of the R or S value in the signature, creating a
// transaction that still validates and spends the inputs, but is not
// recognized by creator of the transaction. Performing a canonical
// check enforces script signatures use a unique DER format.
ScriptCanonicalSignatures
)
// NewScript returns a new script engine for the provided tx and input idx with
// a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is
// true then it will be treated as if the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *btcwire.MsgTx, flags ScriptFlags) (*Script, error) {
var m Script
scripts := [][]byte{scriptSig, scriptPubKey}
m.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
var err error
m.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
// If the first scripts(s) are empty, must start on later ones.
if i == 0 && len(scr) == 0 {
// This could end up seeing an invalid initial pc if
// all scripts were empty. However, that is an invalid
// case and should fail.
m.scriptidx = i + 1
}
}
// Parse flags.
bip16 := flags&ScriptBip16 == ScriptBip16
if bip16 && isScriptHash(m.scripts[1]) {
// if we are pay to scripthash then we only accept input
// scripts that push data
if !isPushOnly(m.scripts[0]) {
return nil, StackErrP2SHNonPushOnly
}
m.bip16 = true
}
if flags&ScriptCanonicalSignatures == ScriptCanonicalSignatures {
m.der = true
}
m.tx = *tx
m.txidx = txidx
m.condStack = []int{OpCondTrue}
return &m, nil
}
// Execute will execute all script in the script engine and return either nil
// for successful validation or an error if one occurred.
func (s *Script) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := s.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = s.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if s.dstack.Depth() != 0 {
dstr = "Stack\n" + spew.Sdump(s.dstack)
}
if s.astack.Depth() != 0 {
astr = "AltStack\n" + spew.Sdump(s.astack)
}
return dstr + astr
}))
}
return s.CheckErrorCondition()
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (s *Script) CheckErrorCondition() (err error) {
// Check we are actually done. if pc is past the end of script array
// then we have run out of scripts to run.
if s.scriptidx < len(s.scripts) {
return StackErrScriptUnfinished
}
if s.dstack.Depth() < 1 {
return StackErrEmptyStack
}
v, err := s.dstack.PopBool()
if err == nil && v == false {
// log interesting data.
log.Tracef("%v", func() string {
dis0, _ := s.DisasmScript(0)
dis1, _ := s.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
})
err = StackErrScriptFailed
}
if err == nil && len(s.condStack) != 1 {
// conditional execution stack context left active
err = StackErrMissingEndif
}
return err
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the curent has ended. Step
// will return true in the case that the last opcode was successfully executed.
// if an error is returned then the result of calling Step or any other method
// is undefined.
func (m *Script) Step() (done bool, err error) {
// verify that it is pointing to a valid script address
err = m.validPC()
if err != nil {
return
}
opcode := m.scripts[m.scriptidx][m.scriptoff]
executeInstr := true
if m.condStack[0] != OpCondTrue {
// some opcodes still 'activate' if on the non-executing side
// of conditional execution
if opcode.conditional() {
executeInstr = true
} else {
executeInstr = false
}
}
if executeInstr {
err = opcode.exec(m)
if err != nil {
return
}
}
// prepare for next instruction
m.scriptoff++
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
m.numOps = 0 // number of ops is per script.
m.scriptoff = 0
if m.scriptidx == 0 && m.bip16 {
m.scriptidx++
m.savedFirstStack = m.GetStack()
} else if m.scriptidx == 1 && m.bip16 {
// Put us past the end for CheckErrorCondition()
m.scriptidx++
// We check script ran ok, if so then we pull
// the script out of the first stack and executre that.
err := m.CheckErrorCondition()
if err != nil {
return false, err
}
script := m.savedFirstStack[len(m.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
m.scripts = append(m.scripts, pops)
// Set stack to be the stack from first script
// minus the script itself
m.SetStack(m.savedFirstStack[:len(m.savedFirstStack)-1])
} else {
m.scriptidx++
}
// there are zero length scripts in the wild
if m.scriptidx < len(m.scripts) && m.scriptoff >= len(m.scripts[m.scriptidx]) {
m.scriptidx++
}
m.lastcodesep = 0
if m.scriptidx >= len(m.scripts) {
done = true
}
}
return
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (m *Script) curPC() (script int, off int, err error) {
err = m.validPC()
if err != nil {
return 0, 0, err
}
return m.scriptidx, m.scriptoff, nil
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (m *Script) validPC() error {
if m.scriptidx >= len(m.scripts) {
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", m.scriptidx, m.scriptoff, len(m.scripts))
}
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
return fmt.Errorf("Past input scripts %v:%v %v:%04d", m.scriptidx, m.scriptoff, m.scriptidx, len(m.scripts[m.scriptidx]))
}
return nil
}
// DisasmScript returns the disassembly string for the script at offset
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
func (m *Script) DisasmScript(idx int) (disstr string, err error) {
if idx >= len(m.scripts) {
return "", StackErrInvalidIndex
}
for i := range m.scripts[idx] {
disstr = disstr + m.disasm(idx, i) + "\n"
}
return disstr, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (m *Script) DisasmPC() (disstr string, err error) {
scriptidx, scriptoff, err := m.curPC()
if err != nil {
return "", err
}
return m.disasm(scriptidx, scriptoff), nil
}
// disasm is a helper member to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. it does no error checking and leaves that
// to the caller to provide a valid offse.
func (m *Script) disasm(scriptidx int, scriptoff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff,
m.scripts[scriptidx][scriptoff].print(false))
}
// subScript will return the script since the last OP_CODESEPARATOR
func (s *Script) subScript() []parsedOpcode {
return s.scripts[s.scriptidx][s.lastcodesep:]
}
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
// stream in pkscript
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if pop.opcode.value != opcode {
retScript = append(retScript, pop)
}
}
return retScript
}
// removeOpcodeByData will return the pkscript minus any opcodes that would
// push the data in ``data'' to the stack.
func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if !bytes.Equal(pop.data, data) {
retScript = append(retScript, pop)
}
}
return retScript
}
// DisasmString formats a disassembled script for one line printing.
func DisasmString(buf []byte) (string, error) {
disbuf := ""
opcodes, err := parseScript(buf)
if err != nil {
return "", err
}
for _, pop := range opcodes {
disbuf += pop.print(true) + " "
}
if disbuf != "" {
disbuf = disbuf[:len(disbuf)-1]
}
return disbuf, nil
}
// calcScriptHash will, given the a script and hashtype for the current
// scriptmachine, calculate the doubleSha256 hash of the transaction and
// script to be used for signature signing and verification.
func calcScriptHash(script []parsedOpcode, hashType byte, tx *btcwire.MsgTx, idx int) []byte {
// remove all instances of OP_CODESEPARATOR still left in the script
script = removeOpcode(script, OP_CODESEPARATOR)
// Make a deep copy of the transaction, zeroing out the script
// for all inputs that are not currently being processed.
txCopy := tx.Copy()
for i := range txCopy.TxIn {
var txIn btcwire.TxIn
txIn = *txCopy.TxIn[i]
txCopy.TxIn[i] = &txIn
if i == idx {
// unparseScript cannot fail here, because removeOpcode
// above only returns a valid script.
sigscript, _ := unparseScript(script)
txCopy.TxIn[idx].SignatureScript = sigscript
} else {
txCopy.TxIn[i].SignatureScript = []byte{}
}
}
// Default behaviour has all outputs set up.
for i := range txCopy.TxOut {
var txOut btcwire.TxOut
txOut = *txCopy.TxOut[i]
txCopy.TxOut[i] = &txOut
}
switch hashType & 31 {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // empty slice
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
if idx >= len(txCopy.TxOut) {
// This was created by a buggy implementation.
// In this case we do the same as bitcoind and bitcoinj
// and return 1 (as a uint256 little endian) as an
// error. Unfortunately this was not checked anywhere
// and thus is treated as the actual
// hash.
hash := make([]byte, 32)
hash[0] = 0x01
return hash
}
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// all but current output get zeroed out
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = []byte{}
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// XXX bitcoind treats undefined hashtypes like normal
// SigHashAll for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// nothing special here
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
idx = 0
}
var wbuf bytes.Buffer
txCopy.Serialize(&wbuf)
// Append LE 4 bytes hash type
binary.Write(&wbuf, binary.LittleEndian, uint32(hashType))
return btcwire.DoubleSha256(wbuf.Bytes())
}
// scriptUInt8 return the number stored in the first byte of a slice.
func scriptUInt8(script []byte) (uint, error) {
if len(script) <= 1 {
return 0, StackErrShortScript
}
return uint(script[0]), nil
}
// scriptUInt16 returns the number stored in the next 2 bytes of a slice.
func scriptUInt16(script []byte) (uint, error) {
if len(script) <= 2 {
return 0, StackErrShortScript
}
// Yes this is little endian
return ((uint(script[1]) << 8) | uint(script[0])), nil
}
// scriptUInt32 returns the number stored in the first 4 bytes of a slice.
func scriptUInt32(script []byte) (uint, error) {
if len(script) <= 4 {
return 0, StackErrShortScript
}
// Yes this is little endian
return ((uint(script[3]) << 24) | (uint(script[2]) << 16) |
(uint(script[1]) << 8) | uint(script[0])), nil
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *Stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ =
stack.PeekByteArray(i)
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *Stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetStack() [][]byte {
return getStack(&s.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetStack(data [][]byte) {
setStack(&s.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetAltStack() [][]byte {
return getStack(&s.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetAltStack(data [][]byte) {
setStack(&s.astack, data)
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is
// returned.
func GetSigOpCount(script []byte) int {
// We don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(script)
return getSigOpCount(pops, false)
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction. If the script fails to parse, then the
// count up to the point of failure is returned.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int {
// We don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(scriptPubKey)
// non P2SH transactions just treated as normal.
if !(bip16 && isScriptHash(pops)) {
return getSigOpCount(pops, true)
}
// Ok so this is P2SH, get the contained script and count it..
sigPops, err := parseScript(scriptSig)
if err != nil {
return 0
}
if !isPushOnly(sigPops) || len(sigPops) == 0 {
return 0
}
shScript := sigPops[len(sigPops)-1].data
// Means that sigPops is jus OP_1 - OP_16, no sigops there.
if shScript == nil {
return 0
}
shPops, _ := parseScript(shScript)
return getSigOpCount(shPops, true)
}
// getSigOpCount is the implementation function for counting the number of
// signature operations in the script provided by pops. If precise mode is
// requested then we attempt to count the number of operations for a multisig
// op. Otherwise we use the maximum.
func getSigOpCount(pops []parsedOpcode, precise bool) int {
nSigs := 0
for i, pop := range pops {
switch pop.opcode.value {
case OP_CHECKSIG:
fallthrough
case OP_CHECKSIGVERIFY:
nSigs++
case OP_CHECK_MULTISIG:
fallthrough
case OP_CHECKMULTISIGVERIFY:
// If we are being precise then look for familiar
// patterns for multisig, for now all we recognise is
// OP_1 - OP_16 to signify the number of pubkeys.
// Otherwise, we use the max of 20.
if precise && i > 0 &&
pops[i-1].opcode.value >= OP_1 &&
pops[i-1].opcode.value <= OP_16 {
nSigs += int(pops[i-1].opcode.value -
(OP_1 - 1))
} else {
nSigs += MaxPubKeysPerMultiSig
}
default:
// not a sigop.
}
}
return nSigs
}
// PayToPubKeyHashScript creates a new script to pay a transaction
// output to a 20-byte pubkey hash.
func PayToPubKeyHashScript(pubKeyHash []byte) (pkScript []byte, err error) {
pops := []parsedOpcode{
parsedOpcode{
opcode: opcodemap[OP_DUP],
},
parsedOpcode{
opcode: opcodemap[OP_HASH160],
},
parsedOpcode{
opcode: opcodemap[OP_DATA_20],
data: pubKeyHash,
},
parsedOpcode{
opcode: opcodemap[OP_EQUALVERIFY],
},
parsedOpcode{
opcode: opcodemap[OP_CHECKSIG],
},
}
return unparseScript(pops)
}
// SignatureScript creates an input signature script for tx to spend
// BTC sent from a previous output to the owner of privkey. tx must
// include all transaction inputs and outputs, however txin scripts are
// allowed to be filled or empty. The returned script is calculated to
// be used as the idx'th txin sigscript for tx. subscript is the PkScript
// of the previous output being used as the idx'th input. privkey is
// serialized in either a compressed or uncompressed format based on
// compress. This format must match the same format used to generate
// the payment address, or the script validation will fail.
func SignatureScript(tx *btcwire.MsgTx, idx int, subscript []byte, hashType byte, privkey *ecdsa.PrivateKey, compress bool) ([]byte, error) {
return signatureScriptCustomReader(rand.Reader, tx, idx, subscript,
hashType, privkey, compress)
}
// This function exists so we can test ecdsa.Sign's error for an invalid
// reader.
func signatureScriptCustomReader(reader io.Reader, tx *btcwire.MsgTx, idx int,
subscript []byte, hashType byte, privkey *ecdsa.PrivateKey,
compress bool) ([]byte, error) {
parsedScript, err := parseScript(subscript)
if err != nil {
return nil, fmt.Errorf("cannot parse output script: %v", err)
}
hash := calcScriptHash(parsedScript, hashType, tx, idx)
r, s, err := ecdsa.Sign(reader, privkey, hash)
if err != nil {
return nil, fmt.Errorf("cannot sign tx input: %s", err)
}
sig := append(sigDER(r, s), hashType)
pk := (*btcec.PublicKey)(&privkey.PublicKey)
var pubkeyOpcode *parsedOpcode
if compress {
pubkeyOpcode = &parsedOpcode{
opcode: opcodemap[OP_DATA_33],
data: pk.SerializeCompressed(),
}
} else {
pubkeyOpcode = &parsedOpcode{
opcode: opcodemap[OP_DATA_65],
data: pk.SerializeUncompressed(),
}
}
pops := []parsedOpcode{
parsedOpcode{
opcode: opcodemap[byte(len(sig))],
data: sig,
},
*pubkeyOpcode,
}
return unparseScript(pops)
}
// sigDER returns the ECDSA signature r, s in the DER format used by
// signature scripts. The signature does not include the appended hashtype.
//
// encoding/asn1 is broken so we hand roll this output:
//
// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
func sigDER(r, s *big.Int) []byte {
// In DER format, a leading 0x00 octet must be prepended to
// the byte slice so it cannot be interpreted as a negative
// big-endian number. This is only done if the sign bit on
// the first byte is set.
var rb, sb []byte
if r.Bytes()[0]&0x80 != 0 {
paddedBytes := make([]byte, len(r.Bytes())+1)
copy(paddedBytes[1:], r.Bytes())
rb = paddedBytes
} else {
rb = r.Bytes()
}
if s.Bytes()[0]&0x80 != 0 {
paddedBytes := make([]byte, len(s.Bytes())+1)
copy(paddedBytes[1:], s.Bytes())
sb = paddedBytes
} else {
sb = s.Bytes()
}
// total length of returned signature is 1 byte for each magic and
// length (6 total), plus lengths of r and s
length := 6 + len(rb) + len(sb)
b := make([]byte, length, length)
b[0] = 0x30
b[1] = byte(length - 2)
b[2] = 0x02
b[3] = byte(len(rb))
offset := copy(b[4:], rb) + 4
b[offset] = 0x02
b[offset+1] = byte(len(sb))
copy(b[offset+2:], sb)
return b
}
// expectedInputs returns the number of arguments required by a script.
// If the script is of unnown type such that the number can not be determined
// then -1 is returned. We are an interanl function and thus assume that class
// is the real class of pops (and we can thus assume things that were
// determined while finding out the type).
func expectedInputs(pops []parsedOpcode, class ScriptClass) int {
// count needed inputs.
switch class {
case PubKeyTy:
return 1
case PubKeyHashTy:
return 2
case ScriptHashTy:
// Not including script, handled below.
return 1
case MultiSigTy:
// Standard multisig has a push a small number for the number
// of sigs and number of keys.
// Check the first push instrution to see how many arguments are
// expected. typoeOfScript already checked this so that we know
// it'll be one of OP_1 - OP_16.
return int(pops[0].opcode.value - (OP_1 - 1))
case NullDataTy:
fallthrough
default:
return -1
}
}
type ScriptInfo struct {
// The class of the sigscript, equivalent to calling GetScriptClass
// on the sigScript.
PkScriptClass ScriptClass
// the number of inputs provided by the pkScript
NumInputs int
// the number of outputs required by sigScript and any
// pay-to-script-hash scripts. The number will be -1 if unknown.
ExpectedInputs int
// The nubmer of signature operations in the scriptpair.
SigOps int
}
// CalcScriptInfo returns a structure providing data about the scriptpair that
// are provided as arguments. It will error if the pair is in someway invalid
// such taht they can not be analysed, i.e. if they do not parse or the
// pkScript is not a push-only script
func CalcScriptInfo(sigscript, pkscript []byte, bip16 bool) (*ScriptInfo, error) {
si := new(ScriptInfo)
// parse both scripts.
sigPops, err := parseScript(sigscript)
if err != nil {
return nil, err
}
pkPops, err := parseScript(pkscript)
if err != nil {
return nil, err
}
// push only sigScript makes little sense.
si.PkScriptClass = typeOfScript(pkPops)
// Can't have a pkScript that doesn't just push data.
if !isPushOnly(sigPops) {
return nil, StackErrNonPushOnly
}
si.ExpectedInputs = expectedInputs(pkPops, si.PkScriptClass)
// all entries push to stack (or are OP_RESERVED and exec will fail).
si.NumInputs = len(sigPops)
if si.PkScriptClass == ScriptHashTy && bip16 {
// grab the last push instruction in the script and pull out the
// data.
script := sigPops[len(sigPops)-1].data
// check for existance and error else.
shPops, err := parseScript(script)
if err != nil {
return nil, err
}
shClass := typeOfScript(shPops)
shInputs := expectedInputs(shPops, shClass)
if shInputs == -1 {
// We have no fucking clue, then.
si.ExpectedInputs = -1
} else {
si.ExpectedInputs += shInputs
}
si.SigOps = getSigOpCount(shPops, true)
} else {
si.SigOps = getSigOpCount(pkPops, true)
}
return si, nil
}
// CalcMultiSigStats returns the number of public keys and signatures from
// a multi-signature transaction script. The passed script MUST already be
// known to be a multi-signature script.
func CalcMultiSigStats(script []byte) (int, int, error) {
pops, err := parseScript(script)
if err != nil {
return 0, 0, err
}
// A multi-signature script is of the pattern:
// NUM_SIGS PUBKEY PUBKEY PUBKEY... NUM_PUBKEYS OP_CHECKMULTISIG
// Therefore the number of signatures is the oldest item on the stack
// and the number of pubkeys is the 2nd to last. Also, the absolute
// minimum for a multi-signature script is 1 pubkey, so at least 4
// items must be on the stack per:
// OP_1 PUBKEY OP_1 OP_CHECKMULTISIG
if len(pops) < 4 {
return 0, 0, StackErrUnderflow
}
numSigs := int(pops[0].opcode.value - (OP_1 - 1))
numPubKeys := int(pops[len(pops)-2].opcode.value - (OP_1 - 1))
return numPubKeys, numSigs, nil
}