lbcd/claimtrie/merkletrie/collapsedtrie.go
Roy Lee 236cb44eee [lbry] claimtrie: import current snapshot
Sync to tip

Co-authored-by: Brannon King <countprimes@gmail.com>
2021-10-19 01:16:15 -07:00

235 lines
6.2 KiB
Go

package merkletrie
import (
"github.com/lbryio/lbcd/chaincfg/chainhash"
)
type KeyType []byte
type collapsedVertex struct {
children []*collapsedVertex
key KeyType
merkleHash *chainhash.Hash
claimHash *chainhash.Hash
}
// insertAt inserts v into s at index i and returns the new slice.
// https://stackoverflow.com/questions/42746972/golang-insert-to-a-sorted-slice
func insertAt(data []*collapsedVertex, i int, v *collapsedVertex) []*collapsedVertex {
if i == len(data) {
// Insert at end is the easy case.
return append(data, v)
}
// Make space for the inserted element by shifting
// values at the insertion index up one index. The call
// to append does not allocate memory when cap(data) is
// greater than len(data).
data = append(data[:i+1], data[i:]...)
data[i] = v
return data
}
func (ptn *collapsedVertex) Insert(value *collapsedVertex) *collapsedVertex {
// keep it sorted (and sort.Sort is too slow)
index := sortSearch(ptn.children, value.key[0])
ptn.children = insertAt(ptn.children, index, value)
return value
}
// this sort.Search is stolen shamelessly from search.go,
// and modified for performance to not need a closure
func sortSearch(nodes []*collapsedVertex, b byte) int {
i, j := 0, len(nodes)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if nodes[h].key[0] < b {
i = h + 1 // preserves f(i-1) == false
} else {
j = h // preserves f(j) == true
}
}
// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
return i
}
func (ptn *collapsedVertex) findNearest(key KeyType) (int, *collapsedVertex) {
// none of the children overlap on the first char or we would have a parent node with that char
index := sortSearch(ptn.children, key[0])
hits := ptn.children[index:]
if len(hits) > 0 {
return index, hits[0]
}
return -1, nil
}
type collapsedTrie struct {
Root *collapsedVertex
Nodes int
}
func NewCollapsedTrie() *collapsedTrie {
// we never delete the Root node
return &collapsedTrie{Root: &collapsedVertex{key: make(KeyType, 0)}, Nodes: 1}
}
func (pt *collapsedTrie) NodeCount() int {
return pt.Nodes
}
func matchLength(a, b KeyType) int {
minLen := len(a)
if len(b) < minLen {
minLen = len(b)
}
for i := 0; i < minLen; i++ {
if a[i] != b[i] {
return i
}
}
return minLen
}
func (pt *collapsedTrie) insert(value KeyType, node *collapsedVertex) (bool, *collapsedVertex) {
index, child := node.findNearest(value)
match := 0
if index >= 0 { // if we found a child
child.merkleHash = nil
match = matchLength(value, child.key)
if len(value) == match && len(child.key) == match {
return false, child
}
}
if match <= 0 {
pt.Nodes++
return true, node.Insert(&collapsedVertex{key: value})
}
if match < len(child.key) {
grandChild := collapsedVertex{key: child.key[match:], children: child.children,
claimHash: child.claimHash, merkleHash: child.merkleHash}
newChild := collapsedVertex{key: child.key[0:match], children: []*collapsedVertex{&grandChild}}
child = &newChild
node.children[index] = child
pt.Nodes++
if len(value) == match {
return true, child
}
}
return pt.insert(value[match:], child)
}
func (pt *collapsedTrie) InsertOrFind(value KeyType) (bool, *collapsedVertex) {
pt.Root.merkleHash = nil
if len(value) <= 0 {
return false, pt.Root
}
// we store the name so we need to make our own copy of it
// this avoids errors where this function is called via the DB iterator
v2 := make([]byte, len(value))
copy(v2, value)
return pt.insert(v2, pt.Root)
}
func find(value KeyType, node *collapsedVertex, pathIndexes *[]int, path *[]*collapsedVertex) *collapsedVertex {
index, child := node.findNearest(value)
if index < 0 {
return nil
}
match := matchLength(value, child.key)
if len(value) == match && len(child.key) == match {
if pathIndexes != nil {
*pathIndexes = append(*pathIndexes, index)
}
if path != nil {
*path = append(*path, child)
}
return child
}
if match < len(child.key) || match == len(value) {
return nil
}
if pathIndexes != nil {
*pathIndexes = append(*pathIndexes, index)
}
if path != nil {
*path = append(*path, child)
}
return find(value[match:], child, pathIndexes, path)
}
func (pt *collapsedTrie) Find(value KeyType) *collapsedVertex {
if len(value) <= 0 {
return pt.Root
}
return find(value, pt.Root, nil, nil)
}
func (pt *collapsedTrie) FindPath(value KeyType) ([]int, []*collapsedVertex) {
pathIndexes := []int{-1}
path := []*collapsedVertex{pt.Root}
if len(value) > 0 {
result := find(value, pt.Root, &pathIndexes, &path)
if result == nil { // not sure I want this line
return nil, nil
}
}
return pathIndexes, path
}
// IterateFrom can be used to find a value and run a function on that value.
// If the handler returns true it continues to iterate through the children of value.
func (pt *collapsedTrie) IterateFrom(start KeyType, handler func(name KeyType, value *collapsedVertex) bool) {
node := find(start, pt.Root, nil, nil)
if node == nil {
return
}
iterateFrom(start, node, handler)
}
func iterateFrom(name KeyType, node *collapsedVertex, handler func(name KeyType, value *collapsedVertex) bool) {
for handler(name, node) {
for _, child := range node.children {
iterateFrom(append(name, child.key...), child, handler)
}
}
}
func (pt *collapsedTrie) Erase(value KeyType) bool {
indexes, path := pt.FindPath(value)
if path == nil || len(path) <= 1 {
if len(path) == 1 {
path[0].merkleHash = nil
path[0].claimHash = nil
}
return false
}
nodes := pt.Nodes
i := len(path) - 1
path[i].claimHash = nil // this is the thing we are erasing; the rest is book-keeping
for ; i > 0; i-- {
childCount := len(path[i].children)
noClaimData := path[i].claimHash == nil
path[i].merkleHash = nil
if childCount == 1 && noClaimData {
path[i].key = append(path[i].key, path[i].children[0].key...)
path[i].claimHash = path[i].children[0].claimHash
path[i].children = path[i].children[0].children
pt.Nodes--
continue
}
if childCount == 0 && noClaimData {
index := indexes[i]
path[i-1].children = append(path[i-1].children[:index], path[i-1].children[index+1:]...)
pt.Nodes--
continue
}
break
}
for ; i >= 0; i-- {
path[i].merkleHash = nil
}
return nodes > pt.Nodes
}