lbcd/rpcserver.go
Dave Collins 6248dd5e5d Don't return a double pointer.
This commit has no effect on the effective functionality since Go
automatically deferences pointers, but there is no reason to have a
double indirection when returning the reply for getmininginfo.
2014-07-09 01:34:56 -05:00

2269 lines
69 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"crypto/subtle"
"crypto/tls"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"math/rand"
"net"
"net/http"
"os"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/conformal/btcchain"
"github.com/conformal/btcdb"
"github.com/conformal/btcjson"
"github.com/conformal/btcnet"
"github.com/conformal/btcscript"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"github.com/conformal/btcws"
"github.com/conformal/fastsha256"
"github.com/conformal/websocket"
)
const (
// rpcAuthTimeoutSeconds is the number of seconds a connection to the
// RPC server is allowed to stay open without authenticating before it
// is closed.
rpcAuthTimeoutSeconds = 10
// uint256Size is the number of bytes needed to represent an unsigned
// 256-bit integer.
uint256Size = 32
// getworkDataLen is the length of the data field of the getwork RPC.
// It consists of the serialized block header plus the internal sha256
// padding. The internal sha256 padding consists of a single 1 bit
// followed by enough zeros to pad the message out to 56 bytes followed
// by length of the message in bits encoded as a big-endian uint64
// (8 bytes). Thus, the resulting length is a multiple of the sha256
// block size (64 bytes).
getworkDataLen = (1 + ((btcwire.MaxBlockHeaderPayload + 8) /
fastsha256.BlockSize)) * fastsha256.BlockSize
// hash1Len is the length of the hash1 field of the getwork RPC. It
// consists of a zero hash plus the internal sha256 padding. See
// the getworkDataLen comment for details about the internal sha256
// padding format.
hash1Len = (1 + ((btcwire.HashSize + 8) / fastsha256.BlockSize)) *
fastsha256.BlockSize
)
// Errors
var (
// ErrBadParamsField describes an error where the parameters JSON
// field cannot be properly parsed.
ErrBadParamsField = errors.New("bad params field")
)
type commandHandler func(*rpcServer, btcjson.Cmd, <-chan struct{}) (interface{}, error)
// handlers maps RPC command strings to appropriate handler functions.
// this is copied by init because help references rpcHandlers and thus causes
// a dependancy loop.
var rpcHandlers map[string]commandHandler
var rpcHandlersBeforeInit = map[string]commandHandler{
"addnode": handleAddNode,
"createrawtransaction": handleCreateRawTransaction,
"debuglevel": handleDebugLevel,
"decoderawtransaction": handleDecodeRawTransaction,
"decodescript": handleDecodeScript,
"estimatefee": handleUnimplemented,
"estimatepriority": handleUnimplemented,
"getaddednodeinfo": handleGetAddedNodeInfo,
"getbestblock": handleGetBestBlock,
"getbestblockhash": handleGetBestBlockHash,
"getblock": handleGetBlock,
"getblockchaininfo": handleUnimplemented,
"getblockcount": handleGetBlockCount,
"getblockhash": handleGetBlockHash,
"getblocktemplate": handleUnimplemented,
"getconnectioncount": handleGetConnectionCount,
"getcurrentnet": handleGetCurrentNet,
"getdifficulty": handleGetDifficulty,
"getgenerate": handleGetGenerate,
"gethashespersec": handleGetHashesPerSec,
"getinfo": handleGetInfo,
"getmininginfo": handleGetMiningInfo,
"getnettotals": handleGetNetTotals,
"getnetworkhashps": handleGetNetworkHashPS,
"getnetworkinfo": handleUnimplemented,
"getpeerinfo": handleGetPeerInfo,
"getrawmempool": handleGetRawMempool,
"getrawtransaction": handleGetRawTransaction,
"gettxout": handleUnimplemented,
"getwork": handleGetWork,
"help": handleHelp,
"ping": handlePing,
"sendrawtransaction": handleSendRawTransaction,
"setgenerate": handleSetGenerate,
"stop": handleStop,
"submitblock": handleSubmitBlock,
"validateaddress": handleValidateAddress,
"verifychain": handleVerifyChain,
}
func init() {
rpcHandlers = rpcHandlersBeforeInit
}
// list of commands that we recognise, but for which btcd has no support because
// it lacks support for wallet functionality. For these commands the user
// should ask a connected instance of btcwallet.
var rpcAskWallet = map[string]struct{}{
"addmultisigaddress": struct{}{},
"backupwallet": struct{}{},
"createencryptedwallet": struct{}{},
"createmultisig": struct{}{},
"dumpprivkey": struct{}{},
"dumpwallet": struct{}{},
"encryptwallet": struct{}{},
"getaccount": struct{}{},
"getaccountaddress": struct{}{},
"getaddressesbyaccount": struct{}{},
"getbalance": struct{}{},
"getnewaddress": struct{}{},
"getrawchangeaddress": struct{}{},
"getreceivedbyaccount": struct{}{},
"getreceivedbyaddress": struct{}{},
"gettransaction": struct{}{},
"gettxoutsetinfo": struct{}{},
"getunconfirmedbalance": struct{}{},
"getwalletinfo": struct{}{},
"importprivkey": struct{}{},
"importwallet": struct{}{},
"keypoolrefill": struct{}{},
"listaccounts": struct{}{},
"listaddressgroupings": struct{}{},
"listlockunspent": struct{}{},
"listreceivedbyaccount": struct{}{},
"listreceivedbyaddress": struct{}{},
"listsinceblock": struct{}{},
"listtransactions": struct{}{},
"listunspent": struct{}{},
"lockunspent": struct{}{},
"move": struct{}{},
"sendfrom": struct{}{},
"sendmany": struct{}{},
"sendtoaddress": struct{}{},
"setaccount": struct{}{},
"settxfee": struct{}{},
"signmessage": struct{}{},
"signrawtransaction": struct{}{},
"verifymessage": struct{}{},
"walletlock": struct{}{},
"walletpassphrase": struct{}{},
"walletpassphrasechange": struct{}{},
}
// Commands that are temporarily unimplemented.
var rpcUnimplemented = map[string]struct{}{}
// workStateBlockInfo houses information about how to reconstruct a block given
// its template and signature script.
type workStateBlockInfo struct {
msgBlock *btcwire.MsgBlock
signatureScript []byte
}
// workState houses state that is used in between multiple RPC invocations to
// getwork.
type workState struct {
sync.Mutex
lastTxUpdate time.Time
lastGenerated time.Time
prevHash *btcwire.ShaHash
msgBlock *btcwire.MsgBlock
extraNonce uint64
blockInfo map[btcwire.ShaHash]*workStateBlockInfo
}
// newWorkState returns a new instance of a workState with all internal fields
// initialized and ready to use.
func newWorkState() *workState {
return &workState{
blockInfo: make(map[btcwire.ShaHash]*workStateBlockInfo),
}
}
// rpcServer holds the items the rpc server may need to access (config,
// shutdown, main server, etc.)
type rpcServer struct {
started int32
shutdown int32
server *server
authsha [fastsha256.Size]byte
ntfnMgr *wsNotificationManager
numClients int32
statusLines map[int]string
statusLock sync.RWMutex
wg sync.WaitGroup
listeners []net.Listener
workState *workState
quit chan int
}
// Start is used by server.go to start the rpc listener.
func (s *rpcServer) Start() {
if atomic.AddInt32(&s.started, 1) != 1 {
return
}
rpcsLog.Trace("Starting RPC server")
rpcServeMux := http.NewServeMux()
httpServer := &http.Server{
Handler: rpcServeMux,
// Timeout connections which don't complete the initial
// handshake within the allowed timeframe.
ReadTimeout: time.Second * rpcAuthTimeoutSeconds,
}
rpcServeMux.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Connection", "close")
w.Header().Set("Content-Type", "application/json")
r.Close = true
// Limit the number of connections to max allowed.
if s.limitConnections(w, r.RemoteAddr) {
return
}
// Keep track of the number of connected clients.
s.incrementClients()
defer s.decrementClients()
if _, err := s.checkAuth(r, true); err != nil {
jsonAuthFail(w, r, s)
return
}
jsonRPCRead(w, r, s)
})
// Websocket endpoint.
rpcServeMux.HandleFunc("/ws", func(w http.ResponseWriter, r *http.Request) {
authenticated, err := s.checkAuth(r, false)
if err != nil {
http.Error(w, "401 Unauthorized.", http.StatusUnauthorized)
return
}
// Attempt to upgrade the connection to a websocket connection
// using the default size for read/write buffers.
ws, err := websocket.Upgrade(w, r, nil, 0, 0)
if err != nil {
if _, ok := err.(websocket.HandshakeError); !ok {
rpcsLog.Errorf("Unexpected websocket error: %v",
err)
}
return
}
s.WebsocketHandler(ws, r.RemoteAddr, authenticated)
})
for _, listener := range s.listeners {
s.wg.Add(1)
go func(listener net.Listener) {
rpcsLog.Infof("RPC server listening on %s", listener.Addr())
httpServer.Serve(listener)
rpcsLog.Tracef("RPC listener done for %s", listener.Addr())
s.wg.Done()
}(listener)
}
s.ntfnMgr.Start()
}
// httpStatusLine returns a response Status-Line (RFC 2616 Section 6.1)
// for the given request and response status code. This function was lifted and
// adapted from the standard library HTTP server code since it's not exported.
func (s *rpcServer) httpStatusLine(req *http.Request, code int) string {
// Fast path:
key := code
proto11 := req.ProtoAtLeast(1, 1)
if !proto11 {
key = -key
}
s.statusLock.RLock()
line, ok := s.statusLines[key]
s.statusLock.RUnlock()
if ok {
return line
}
// Slow path:
proto := "HTTP/1.0"
if proto11 {
proto = "HTTP/1.1"
}
codeStr := strconv.Itoa(code)
text := http.StatusText(code)
if text != "" {
line = proto + " " + codeStr + " " + text + "\r\n"
s.statusLock.Lock()
s.statusLines[key] = line
s.statusLock.Unlock()
} else {
text = "status code " + codeStr
line = proto + " " + codeStr + " " + text + "\r\n"
}
return line
}
// writeHTTPResponseHeaders writes the necessary response headers prior to
// writing an HTTP body given a request to use for protocol negotiation, headers
// to write, a status code, and a writer.
func (s *rpcServer) writeHTTPResponseHeaders(req *http.Request, headers http.Header, code int, w io.Writer) error {
_, err := io.WriteString(w, s.httpStatusLine(req, code))
if err != nil {
return err
}
err = headers.Write(w)
if err != nil {
return err
}
_, err = io.WriteString(w, "\r\n")
if err != nil {
return err
}
return nil
}
// limitConnections responds with a 503 service unavailable and returns true if
// adding another client would exceed the maximum allow RPC clients.
//
// This function is safe for concurrent access.
func (s *rpcServer) limitConnections(w http.ResponseWriter, remoteAddr string) bool {
if int(atomic.LoadInt32(&s.numClients)+1) > cfg.RPCMaxClients {
rpcsLog.Infof("Max RPC clients exceeded [%d] - "+
"disconnecting client %s", cfg.RPCMaxClients,
remoteAddr)
http.Error(w, "503 Too busy. Try again later.",
http.StatusServiceUnavailable)
return true
}
return false
}
// incrementClients adds one to the number of connected RPC clients. Note
// this only applies to standard clients. Websocket clients have their own
// limits and are tracked separately.
//
// This function is safe for concurrent access.
func (s *rpcServer) incrementClients() {
atomic.AddInt32(&s.numClients, 1)
}
// decrementClients subtracts one from the number of connected RPC clients.
// Note this only applies to standard clients. Websocket clients have their own
// limits and are tracked separately.
//
// This function is safe for concurrent access.
func (s *rpcServer) decrementClients() {
atomic.AddInt32(&s.numClients, -1)
}
// checkAuth checks the HTTP Basic authentication supplied by a wallet
// or RPC client in the HTTP request r. If the supplied authentication
// does not match the username and password expected, a non-nil error is
// returned.
//
// This check is time-constant.
func (s *rpcServer) checkAuth(r *http.Request, require bool) (bool, error) {
authhdr := r.Header["Authorization"]
if len(authhdr) <= 0 {
if require {
rpcsLog.Warnf("RPC authentication failure from %s",
r.RemoteAddr)
return false, errors.New("auth failure")
}
return false, nil
}
authsha := fastsha256.Sum256([]byte(authhdr[0]))
cmp := subtle.ConstantTimeCompare(authsha[:], s.authsha[:])
if cmp != 1 {
rpcsLog.Warnf("RPC authentication failure from %s", r.RemoteAddr)
return false, errors.New("auth failure")
}
return true, nil
}
// Stop is used by server.go to stop the rpc listener.
func (s *rpcServer) Stop() error {
if atomic.AddInt32(&s.shutdown, 1) != 1 {
rpcsLog.Infof("RPC server is already in the process of shutting down")
return nil
}
rpcsLog.Warnf("RPC server shutting down")
for _, listener := range s.listeners {
err := listener.Close()
if err != nil {
rpcsLog.Errorf("Problem shutting down rpc: %v", err)
return err
}
}
s.ntfnMgr.Shutdown()
s.ntfnMgr.WaitForShutdown()
close(s.quit)
s.wg.Wait()
rpcsLog.Infof("RPC server shutdown complete")
return nil
}
// genCertPair generates a key/cert pair to the paths provided.
func genCertPair(certFile, keyFile string) error {
rpcsLog.Infof("Generating TLS certificates...")
org := "btcd autogenerated cert"
validUntil := time.Now().Add(10 * 365 * 24 * time.Hour)
cert, key, err := btcutil.NewTLSCertPair(org, validUntil, nil)
if err != nil {
return err
}
// Write cert and key files.
if err = ioutil.WriteFile(certFile, cert, 0666); err != nil {
return err
}
if err = ioutil.WriteFile(keyFile, key, 0600); err != nil {
os.Remove(certFile)
return err
}
rpcsLog.Infof("Done generating TLS certificates")
return nil
}
// newRPCServer returns a new instance of the rpcServer struct.
func newRPCServer(listenAddrs []string, s *server) (*rpcServer, error) {
login := cfg.RPCUser + ":" + cfg.RPCPass
auth := "Basic " + base64.StdEncoding.EncodeToString([]byte(login))
rpc := rpcServer{
authsha: fastsha256.Sum256([]byte(auth)),
server: s,
statusLines: make(map[int]string),
workState: newWorkState(),
quit: make(chan int),
}
rpc.ntfnMgr = newWsNotificationManager(&rpc)
// check for existence of cert file and key file
if !fileExists(cfg.RPCKey) && !fileExists(cfg.RPCCert) {
// if both files do not exist, we generate them.
err := genCertPair(cfg.RPCCert, cfg.RPCKey)
if err != nil {
return nil, err
}
}
keypair, err := tls.LoadX509KeyPair(cfg.RPCCert, cfg.RPCKey)
if err != nil {
return nil, err
}
tlsConfig := tls.Config{
Certificates: []tls.Certificate{keypair},
}
// TODO(oga) this code is similar to that in server, should be
// factored into something shared.
ipv4ListenAddrs, ipv6ListenAddrs, _, err := parseListeners(listenAddrs)
if err != nil {
return nil, err
}
listeners := make([]net.Listener, 0,
len(ipv6ListenAddrs)+len(ipv4ListenAddrs))
for _, addr := range ipv4ListenAddrs {
listener, err := tls.Listen("tcp4", addr, &tlsConfig)
if err != nil {
rpcsLog.Warnf("Can't listen on %s: %v", addr,
err)
continue
}
listeners = append(listeners, listener)
}
for _, addr := range ipv6ListenAddrs {
listener, err := tls.Listen("tcp6", addr, &tlsConfig)
if err != nil {
rpcsLog.Warnf("Can't listen on %s: %v", addr,
err)
continue
}
listeners = append(listeners, listener)
}
if len(listeners) == 0 {
return nil, errors.New("RPCS: No valid listen address")
}
rpc.listeners = listeners
return &rpc, nil
}
// jsonAuthFail sends a message back to the client if the http auth is rejected.
func jsonAuthFail(w http.ResponseWriter, r *http.Request, s *rpcServer) {
w.Header().Add("WWW-Authenticate", `Basic realm="btcd RPC"`)
http.Error(w, "401 Unauthorized.", http.StatusUnauthorized)
}
// jsonRPCRead is the RPC wrapper around the jsonRead function to handle reading
// and responding to RPC messages.
func jsonRPCRead(w http.ResponseWriter, r *http.Request, s *rpcServer) {
if atomic.LoadInt32(&s.shutdown) != 0 {
return
}
body, err := btcjson.GetRaw(r.Body)
if err != nil {
rpcsLog.Errorf("Error getting json message: %v", err)
return
}
// Unfortunately, the http server doesn't provide the ability to
// change the read deadline for the new connection and having one breaks
// long polling. However, not having a read deadline on the initial
// connection would mean clients can connect and idle forever. Thus,
// hijack the connecton from the HTTP server, clear the read deadline,
// and handle writing the response manually.
hj, ok := w.(http.Hijacker)
if !ok {
errMsg := "webserver doesn't support hijacking"
rpcsLog.Warnf(errMsg)
errCode := http.StatusInternalServerError
http.Error(w, strconv.FormatInt(int64(errCode), 10)+" "+errMsg,
errCode)
return
}
conn, buf, err := hj.Hijack()
if err != nil {
rpcsLog.Warnf("Failed to hijack HTTP connection: %v", err)
errCode := http.StatusInternalServerError
http.Error(w, strconv.FormatInt(int64(errCode), 10)+" "+
err.Error(), errCode)
return
}
defer conn.Close()
defer buf.Flush()
conn.SetReadDeadline(timeZeroVal)
var reply btcjson.Reply
cmd, jsonErr := parseCmd(body)
if cmd != nil {
// Unmarshaling at least a valid JSON-RPC message succeeded.
// Use the provided id for errors.
id := cmd.Id()
reply.Id = &id
}
if jsonErr != nil {
reply.Error = jsonErr
} else {
// Setup a close notifier. Since the connection is hijacked,
// the CloseNotifer on the ResponseWriter is not available.
closeChan := make(chan struct{}, 1)
go func() {
_, err := conn.Read(make([]byte, 1))
if err != nil {
close(closeChan)
}
}()
reply = standardCmdReply(cmd, s, closeChan)
}
rpcsLog.Tracef("reply: %v", reply)
err = s.writeHTTPResponseHeaders(r, w.Header(), http.StatusOK, buf)
if err != nil {
rpcsLog.Error(err)
return
}
msg, err := btcjson.MarshallAndSend(reply, buf)
if err != nil {
rpcsLog.Error(err)
return
}
rpcsLog.Tracef(msg)
}
// handleUnimplemented is a temporary handler for commands that we should
// support but do not.
func handleUnimplemented(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return nil, btcjson.ErrUnimplemented
}
// handleAskWallet is the handler for commands that we do recognise as valid
// but that we can not answer correctly since it involves wallet state.
// These commands will be implemented in btcwallet.
func handleAskWallet(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return nil, btcjson.ErrNoWallet
}
// handleAddNode handles addnode commands.
func handleAddNode(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.AddNodeCmd)
addr := normalizeAddress(c.Addr, activeNetParams.DefaultPort)
var err error
switch c.SubCmd {
case "add":
err = s.server.AddAddr(addr, true)
case "remove":
err = s.server.RemoveAddr(addr)
case "onetry":
err = s.server.AddAddr(addr, false)
default:
err = errors.New("invalid subcommand for addnode")
}
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
// no data returned unless an error.
return nil, nil
}
// messageToHex serializes a message to the wire protocol encoding using the
// latest protocol version and returns a hex-encoded string of the result.
func messageToHex(msg btcwire.Message) (string, error) {
var buf bytes.Buffer
err := msg.BtcEncode(&buf, maxProtocolVersion)
if err != nil {
return "", btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
return hex.EncodeToString(buf.Bytes()), nil
}
// handleCreateRawTransaction handles createrawtransaction commands.
func handleCreateRawTransaction(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.CreateRawTransactionCmd)
// Add all transaction inputs to a new transaction after performing
// some validity checks.
mtx := btcwire.NewMsgTx()
for _, input := range c.Inputs {
txHash, err := btcwire.NewShaHashFromStr(input.Txid)
if err != nil {
return nil, btcjson.ErrDecodeHexString
}
if input.Vout < 0 {
return nil, btcjson.Error{
Code: btcjson.ErrInvalidParameter.Code,
Message: "Invalid parameter, vout must be positive",
}
}
prevOut := btcwire.NewOutPoint(txHash, uint32(input.Vout))
txIn := btcwire.NewTxIn(prevOut, []byte{})
mtx.AddTxIn(txIn)
}
// Add all transaction outputs to the transaction after performing
// some validity checks.
for encodedAddr, amount := range c.Amounts {
// Ensure amount is in the valid range for monetary amounts.
if amount <= 0 || amount > btcutil.MaxSatoshi {
return nil, btcjson.Error{
Code: btcjson.ErrType.Code,
Message: "Invalid amount",
}
}
// Decode the provided address.
addr, err := btcutil.DecodeAddress(encodedAddr,
activeNetParams.Params)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInvalidAddressOrKey.Code,
Message: btcjson.ErrInvalidAddressOrKey.Message +
": " + err.Error(),
}
}
// Ensure the address is one of the supported types and that
// the network encoded with the address matches the network the
// server is currently on.
switch addr.(type) {
case *btcutil.AddressPubKeyHash:
case *btcutil.AddressScriptHash:
default:
return nil, btcjson.ErrInvalidAddressOrKey
}
if !addr.IsForNet(s.server.netParams) {
return nil, btcjson.Error{
Code: btcjson.ErrInvalidAddressOrKey.Code,
Message: fmt.Sprintf("%s: %q",
btcjson.ErrInvalidAddressOrKey.Message,
encodedAddr),
}
}
// Create a new script which pays to the provided address.
pkScript, err := btcscript.PayToAddrScript(addr)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
txOut := btcwire.NewTxOut(amount, pkScript)
mtx.AddTxOut(txOut)
}
// Return the serialized and hex-encoded transaction.
mtxHex, err := messageToHex(mtx)
if err != nil {
return nil, err
}
return mtxHex, nil
}
// handleDebugLevel handles debuglevel commands.
func handleDebugLevel(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.DebugLevelCmd)
// Special show command to list supported subsystems.
if c.LevelSpec == "show" {
return fmt.Sprintf("Supported subsystems %v",
supportedSubsystems()), nil
}
err := parseAndSetDebugLevels(c.LevelSpec)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInvalidParams.Code,
Message: err.Error(),
}
}
return "Done.", nil
}
// createVinList returns a slice of JSON objects for the inputs of the passed
// transaction.
func createVinList(mtx *btcwire.MsgTx) ([]btcjson.Vin, error) {
tx := btcutil.NewTx(mtx)
vinList := make([]btcjson.Vin, len(mtx.TxIn))
for i, v := range mtx.TxIn {
if btcchain.IsCoinBase(tx) {
vinList[i].Coinbase = hex.EncodeToString(v.SignatureScript)
} else {
vinList[i].Txid = v.PreviousOutpoint.Hash.String()
vinList[i].Vout = v.PreviousOutpoint.Index
disbuf, err := btcscript.DisasmString(v.SignatureScript)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
vinList[i].ScriptSig = new(btcjson.ScriptSig)
vinList[i].ScriptSig.Asm = disbuf
vinList[i].ScriptSig.Hex = hex.EncodeToString(v.SignatureScript)
}
vinList[i].Sequence = v.Sequence
}
return vinList, nil
}
// createVoutList returns a slice of JSON objects for the outputs of the passed
// transaction.
func createVoutList(mtx *btcwire.MsgTx, net *btcnet.Params) ([]btcjson.Vout, error) {
voutList := make([]btcjson.Vout, len(mtx.TxOut))
for i, v := range mtx.TxOut {
voutList[i].N = uint32(i)
voutList[i].Value = float64(v.Value) / btcutil.SatoshiPerBitcoin
disbuf, err := btcscript.DisasmString(v.PkScript)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
voutList[i].ScriptPubKey.Asm = disbuf
voutList[i].ScriptPubKey.Hex = hex.EncodeToString(v.PkScript)
// Ignore the error here since an error means the script
// couldn't parse and there is no additional information about
// it anyways.
scriptClass, addrs, reqSigs, _ := btcscript.ExtractPkScriptAddrs(v.PkScript, net)
voutList[i].ScriptPubKey.Type = scriptClass.String()
voutList[i].ScriptPubKey.ReqSigs = int32(reqSigs)
if addrs == nil {
voutList[i].ScriptPubKey.Addresses = nil
} else {
voutList[i].ScriptPubKey.Addresses = make([]string, len(addrs))
for j, addr := range addrs {
voutList[i].ScriptPubKey.Addresses[j] = addr.EncodeAddress()
}
}
}
return voutList, nil
}
// createTxRawResult converts the passed transaction and associated parameters
// to a raw transaction JSON object.
func createTxRawResult(net *btcnet.Params, txSha string, mtx *btcwire.MsgTx,
blk *btcutil.Block, maxidx int64,
blksha *btcwire.ShaHash) (*btcjson.TxRawResult, error) {
mtxHex, err := messageToHex(mtx)
if err != nil {
return nil, err
}
vin, err := createVinList(mtx)
if err != nil {
return nil, err
}
vout, err := createVoutList(mtx, net)
if err != nil {
return nil, err
}
txReply := &btcjson.TxRawResult{
Hex: mtxHex,
Txid: txSha,
Vout: vout,
Vin: vin,
Version: mtx.Version,
LockTime: mtx.LockTime,
}
if blk != nil {
blockHeader := &blk.MsgBlock().Header
idx := blk.Height()
// This is not a typo, they are identical in bitcoind as well.
txReply.Time = blockHeader.Timestamp.Unix()
txReply.Blocktime = blockHeader.Timestamp.Unix()
txReply.BlockHash = blksha.String()
txReply.Confirmations = uint64(1 + maxidx - idx)
}
return txReply, nil
}
// handleDecodeRawTransaction handles decoderawtransaction commands.
func handleDecodeRawTransaction(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.DecodeRawTransactionCmd)
// Deserialize the transaction.
hexStr := c.HexTx
if len(hexStr)%2 != 0 {
hexStr = "0" + hexStr
}
serializedTx, err := hex.DecodeString(hexStr)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDecodeHexString.Code,
Message: fmt.Sprintf("argument must be hexadecimal "+
"string (not %q)", hexStr),
}
}
var mtx btcwire.MsgTx
err = mtx.Deserialize(bytes.NewReader(serializedTx))
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDeserialization.Code,
Message: "TX decode failed",
}
}
txSha, _ := mtx.TxSha()
vin, err := createVinList(&mtx)
if err != nil {
return nil, err
}
vout, err := createVoutList(&mtx, s.server.netParams)
if err != nil {
return nil, err
}
// Create and return the result.
txReply := btcjson.TxRawDecodeResult{
Txid: txSha.String(),
Version: mtx.Version,
Locktime: mtx.LockTime,
Vin: vin,
Vout: vout,
}
return txReply, nil
}
// handleDecodeScript handles decodescript commands.
func handleDecodeScript(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.DecodeScriptCmd)
// Convert the hex script to bytes.
hexStr := c.HexScript
if len(hexStr)%2 != 0 {
hexStr = "0" + hexStr
}
script, err := hex.DecodeString(hexStr)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDecodeHexString.Code,
Message: fmt.Sprintf("argument must be hexadecimal "+
"string (not %q)", hexStr),
}
}
// The disassembled string will contain [error] inline if the script
// doesn't fully parse, so ignore the error here.
disbuf, _ := btcscript.DisasmString(script)
// Get information about the script.
// Ignore the error here since an error means the script couldn't parse
// and there is no additinal information about it anyways.
net := s.server.netParams
scriptClass, addrs, reqSigs, _ := btcscript.ExtractPkScriptAddrs(script, net)
addresses := make([]string, len(addrs))
for i, addr := range addrs {
addresses[i] = addr.EncodeAddress()
}
// Convert the script itself to a pay-to-script-hash address.
p2sh, err := btcutil.NewAddressScriptHash(script, net)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
// Generate and return the reply.
reply := btcjson.DecodeScriptResult{
Asm: disbuf,
ReqSigs: int32(reqSigs),
Type: scriptClass.String(),
Addresses: addresses,
P2sh: p2sh.EncodeAddress(),
}
return reply, nil
}
// handleGetAddedNodeInfo handles getaddednodeinfo commands.
func handleGetAddedNodeInfo(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetAddedNodeInfoCmd)
// Retrieve a list of persistent (added) peers from the bitcoin server
// and filter the list of peer per the specified address (if any).
peers := s.server.AddedNodeInfo()
if c.Node != "" {
found := false
for i, peer := range peers {
if peer.addr == c.Node {
peers = peers[i : i+1]
found = true
}
}
if !found {
return nil, btcjson.Error{
Code: -24,
Message: "Node has not been added.",
}
}
}
// Without the dns flag, the result is just a slice of the addresses as
// strings.
if !c.Dns {
results := make([]string, 0, len(peers))
for _, peer := range peers {
results = append(results, peer.addr)
}
return results, nil
}
// With the dns flag, the result is an array of JSON objects which
// include the result of DNS lookups for each peer.
results := make([]*btcjson.GetAddedNodeInfoResult, 0, len(peers))
for _, peer := range peers {
// Set the "address" of the peer which could be an ip address
// or a domain name.
var result btcjson.GetAddedNodeInfoResult
result.AddedNode = peer.addr
isConnected := peer.Connected()
result.Connected = &isConnected
// Split the address into host and port portions so we can do
// a DNS lookup against the host. When no port is specified in
// the address, just use the address as the host.
host, _, err := net.SplitHostPort(peer.addr)
if err != nil {
host = peer.addr
}
// Do a DNS lookup for the address. If the lookup fails, just
// use the host.
var ipList []string
ips, err := btcdLookup(host)
if err == nil {
ipList = make([]string, 0, len(ips))
for _, ip := range ips {
ipList = append(ipList, ip.String())
}
} else {
ipList = make([]string, 1)
ipList[0] = host
}
// Add the addresses and connection info to the result.
addrs := make([]btcjson.GetAddedNodeInfoResultAddr, 0, len(ipList))
for _, ip := range ipList {
var addr btcjson.GetAddedNodeInfoResultAddr
addr.Address = ip
addr.Connected = "false"
if ip == host && peer.Connected() {
addr.Connected = directionString(peer.inbound)
}
addrs = append(addrs, addr)
}
result.Addresses = &addrs
results = append(results, &result)
}
return results, nil
}
// handleGetBestBlock implements the getbestblock command.
func handleGetBestBlock(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
// All other "get block" commands give either the height, the
// hash, or both but require the block SHA. This gets both for
// the best block.
sha, height, err := s.server.db.NewestSha()
if err != nil {
return nil, btcjson.ErrBestBlockHash
}
result := &btcws.GetBestBlockResult{
Hash: sha.String(),
Height: int32(height),
}
return result, nil
}
// handleGetBestBlockHash implements the getbestblockhash command.
func handleGetBestBlockHash(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
sha, _, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Error getting newest sha: %v", err)
return nil, btcjson.ErrBestBlockHash
}
return sha.String(), nil
}
// handleGetBlock implements the getblock command.
func handleGetBlock(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetBlockCmd)
sha, err := btcwire.NewShaHashFromStr(c.Hash)
if err != nil {
rpcsLog.Errorf("Error generating sha: %v", err)
return nil, btcjson.ErrBlockNotFound
}
blk, err := s.server.db.FetchBlockBySha(sha)
if err != nil {
rpcsLog.Errorf("Error fetching sha: %v", err)
return nil, btcjson.ErrBlockNotFound
}
// When the verbose flag isn't set, simply return the network-serialized
// block as a hex-encoded string.
if !c.Verbose {
blkHex, err := messageToHex(blk.MsgBlock())
if err != nil {
return nil, err
}
return blkHex, nil
}
// The verbose flag is set, so generate the JSON object and return it.
buf, err := blk.Bytes()
if err != nil {
rpcsLog.Errorf("Error fetching block: %v", err)
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
idx := blk.Height()
_, maxidx, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Cannot get newest sha: %v", err)
return nil, btcjson.ErrBlockNotFound
}
blockHeader := &blk.MsgBlock().Header
blockReply := btcjson.BlockResult{
Hash: c.Hash,
Version: blockHeader.Version,
MerkleRoot: blockHeader.MerkleRoot.String(),
PreviousHash: blockHeader.PrevBlock.String(),
Nonce: blockHeader.Nonce,
Time: blockHeader.Timestamp.Unix(),
Confirmations: uint64(1 + maxidx - idx),
Height: idx,
Size: int32(len(buf)),
Bits: strconv.FormatInt(int64(blockHeader.Bits), 16),
Difficulty: getDifficultyRatio(blockHeader.Bits),
}
if !c.VerboseTx {
transactions := blk.Transactions()
txNames := make([]string, len(transactions))
for i, tx := range transactions {
txNames[i] = tx.Sha().String()
}
blockReply.Tx = txNames
} else {
txns := blk.Transactions()
rawTxns := make([]btcjson.TxRawResult, len(txns))
for i, tx := range txns {
txSha := tx.Sha().String()
mtx := tx.MsgTx()
rawTxn, err := createTxRawResult(s.server.netParams,
txSha, mtx, blk, maxidx, sha)
if err != nil {
rpcsLog.Errorf("Cannot create TxRawResult for "+
"transaction %s: %v", txSha, err)
return nil, err
}
rawTxns[i] = *rawTxn
}
blockReply.RawTx = rawTxns
}
// Get next block unless we are already at the top.
if idx < maxidx {
var shaNext *btcwire.ShaHash
shaNext, err = s.server.db.FetchBlockShaByHeight(int64(idx + 1))
if err != nil {
rpcsLog.Errorf("No next block: %v", err)
return nil, btcjson.ErrBlockNotFound
}
blockReply.NextHash = shaNext.String()
}
return blockReply, nil
}
// handleGetBlockCount implements the getblockcount command.
func handleGetBlockCount(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
_, maxidx, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Error getting newest sha: %v", err)
return nil, btcjson.ErrBlockCount
}
return maxidx, nil
}
// handleGetBlockHash implements the getblockhash command.
func handleGetBlockHash(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetBlockHashCmd)
sha, err := s.server.db.FetchBlockShaByHeight(c.Index)
if err != nil {
rpcsLog.Errorf("Error getting block: %v", err)
return nil, btcjson.ErrOutOfRange
}
return sha.String(), nil
}
// handleGetConnectionCount implements the getconnectioncount command.
func handleGetConnectionCount(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return s.server.ConnectedCount(), nil
}
// handleGetCurrentNet implements the getcurrentnet command.
func handleGetCurrentNet(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return s.server.netParams.Net, nil
}
// handleGetDifficulty implements the getdifficulty command.
func handleGetDifficulty(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
sha, _, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Error getting sha: %v", err)
return nil, btcjson.ErrDifficulty
}
blockHeader, err := s.server.db.FetchBlockHeaderBySha(sha)
if err != nil {
rpcsLog.Errorf("Error getting block: %v", err)
return nil, btcjson.ErrDifficulty
}
return getDifficultyRatio(blockHeader.Bits), nil
}
// handleGetGenerate implements the getgenerate command.
func handleGetGenerate(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return s.server.cpuMiner.IsMining(), nil
}
// handleGetHashesPerSec implements the gethashespersec command.
func handleGetHashesPerSec(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return int64(s.server.cpuMiner.HashesPerSecond()), nil
}
// handleGetInfo implements the getinfo command. We only return the fields
// that are not related to wallet functionality.
func handleGetInfo(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
// We require the current block height and sha.
sha, height, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Error getting sha: %v", err)
return nil, btcjson.ErrBlockCount
}
blkHeader, err := s.server.db.FetchBlockHeaderBySha(sha)
if err != nil {
rpcsLog.Errorf("Error getting block: %v", err)
return nil, btcjson.ErrDifficulty
}
ret := &btcjson.InfoResult{
Version: int32(1000000*appMajor + 10000*appMinor + 100*appPatch),
ProtocolVersion: int32(maxProtocolVersion),
Blocks: int32(height),
TimeOffset: 0,
Connections: s.server.ConnectedCount(),
Proxy: cfg.Proxy,
Difficulty: getDifficultyRatio(blkHeader.Bits),
TestNet: cfg.TestNet3,
RelayFee: float64(minTxRelayFee) / btcutil.SatoshiPerBitcoin,
}
return ret, nil
}
// handleGetMiningInfo implements the getmininginfo command. We only return the
// fields that are not related to wallet functionality.
func handleGetMiningInfo(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
sha, height, err := s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Error getting sha: %v", err)
return nil, btcjson.ErrBlockCount
}
block, err := s.server.db.FetchBlockBySha(sha)
if err != nil {
rpcsLog.Errorf("Error getting block: %v", err)
return nil, btcjson.ErrBlockNotFound
}
blockBytes, err := block.Bytes()
if err != nil {
rpcsLog.Errorf("Error getting block: %v", err)
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
// Create a default getnetworkhashps command to use defaults and make
// use of the existing getnetworkhashps handler.
gnhpsCmd, err := btcjson.NewGetNetworkHashPSCmd(0)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
networkHashesPerSecIface, err := handleGetNetworkHashPS(s, gnhpsCmd,
closeChan)
if err != nil {
// This is already a btcjson.Error from the handler.
return nil, err
}
networkHashesPerSec, ok := networkHashesPerSecIface.(int64)
if !ok {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: "networkHashesPerSec is not an int64",
}
}
result := btcjson.GetMiningInfoResult{
Blocks: height,
CurrentBlockSize: uint64(len(blockBytes)),
CurrentBlockTx: uint64(len(block.MsgBlock().Transactions)),
Difficulty: getDifficultyRatio(block.MsgBlock().Header.Bits),
Generate: s.server.cpuMiner.IsMining(),
GenProcLimit: s.server.cpuMiner.NumWorkers(),
HashesPerSec: int64(s.server.cpuMiner.HashesPerSecond()),
NetworkHashPS: networkHashesPerSec,
PooledTx: uint64(s.server.txMemPool.Count()),
TestNet: cfg.TestNet3,
}
return &result, nil
}
// handleGetNetTotals implements the getnettotals command.
func handleGetNetTotals(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
totalBytesRecv, totalBytesSent := s.server.NetTotals()
reply := &btcjson.GetNetTotalsResult{
TotalBytesRecv: totalBytesRecv,
TotalBytesSent: totalBytesSent,
TimeMillis: time.Now().UTC().UnixNano() / int64(time.Millisecond),
}
return reply, nil
}
// handleGetNetworkHashPS implements the getnetworkhashps command.
func handleGetNetworkHashPS(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetNetworkHashPSCmd)
_, newestHeight, err := s.server.db.NewestSha()
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
// When the passed height is too high or zero, just return 0 now
// since we can't reasonably calculate the number of network hashes
// per second from invalid values. When it's negative, use the current
// best block height.
endHeight := int64(c.Height)
if endHeight > newestHeight || endHeight == 0 {
return 0, nil
}
if endHeight < 0 {
endHeight = newestHeight
}
// Calculate the starting block height based on the passed number of
// blocks. When the passed value is negative, use the last block the
// difficulty changed as the starting height. Also make sure the
// starting height is not before the beginning of the chain.
var startHeight int64
if c.Blocks <= 0 {
startHeight = endHeight - ((endHeight % btcchain.BlocksPerRetarget) + 1)
} else {
startHeight = endHeight - int64(c.Blocks)
}
if startHeight < 0 {
startHeight = 0
}
rpcsLog.Debugf("Calculating network hashes per second from %d to %d",
startHeight, endHeight)
// Find the min and max block timestamps as well as calculate the total
// amount of work that happened between the start and end blocks.
var minTimestamp, maxTimestamp time.Time
totalWork := big.NewInt(0)
for curHeight := startHeight; curHeight <= endHeight; curHeight++ {
hash, err := s.server.db.FetchBlockShaByHeight(curHeight)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
header, err := s.server.db.FetchBlockHeaderBySha(hash)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
if curHeight == startHeight {
minTimestamp = header.Timestamp
maxTimestamp = minTimestamp
} else {
totalWork.Add(totalWork, btcchain.CalcWork(header.Bits))
if minTimestamp.After(header.Timestamp) {
minTimestamp = header.Timestamp
}
if maxTimestamp.Before(header.Timestamp) {
maxTimestamp = header.Timestamp
}
}
}
// Calculate the difference in seconds between the min and max block
// timestamps and avoid division by zero in the case where there is no
// time difference.
timeDiff := int64(maxTimestamp.Sub(minTimestamp) / time.Second)
if timeDiff == 0 {
return 0, nil
}
hashesPerSec := new(big.Int).Div(totalWork, big.NewInt(timeDiff))
return hashesPerSec.Int64(), nil
}
// handleGetPeerInfo implements the getpeerinfo command.
func handleGetPeerInfo(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
return s.server.PeerInfo(), nil
}
// handleGetRawMempool implements the getrawmempool command.
func handleGetRawMempool(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetRawMempoolCmd)
descs := s.server.txMemPool.TxDescs()
if c.Verbose {
result := make(map[string]*btcjson.GetRawMempoolResult, len(descs))
for _, desc := range descs {
mpd := &btcjson.GetRawMempoolResult{
Size: int32(desc.Tx.MsgTx().SerializeSize()),
Fee: float64(desc.Fee) /
btcutil.SatoshiPerBitcoin,
Time: desc.Added.Unix(),
Height: desc.Height,
StartingPriority: 0, // We don't mine.
CurrentPriority: 0, // We don't mine.
Depends: make([]string, 0),
}
for _, txIn := range desc.Tx.MsgTx().TxIn {
hash := &txIn.PreviousOutpoint.Hash
if s.server.txMemPool.HaveTransaction(hash) {
mpd.Depends = append(mpd.Depends,
hash.String())
}
}
result[desc.Tx.Sha().String()] = mpd
}
return result, nil
}
// The response is simply an array of the transaction hashes if the
// verbose flag is not set.
hashStrings := make([]string, len(descs))
for i := range hashStrings {
hashStrings[i] = descs[i].Tx.Sha().String()
}
return hashStrings, nil
}
// handleGetRawTransaction implements the getrawtransaction command.
func handleGetRawTransaction(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetRawTransactionCmd)
// Convert the provided transaction hash hex to a ShaHash.
txSha, err := btcwire.NewShaHashFromStr(c.Txid)
if err != nil {
rpcsLog.Errorf("Error generating sha: %v", err)
return nil, btcjson.Error{
Code: btcjson.ErrBlockNotFound.Code,
Message: "Parameter 1 must be a hexaecimal string",
}
}
// Try to fetch the transaction from the memory pool and if that fails,
// try the block database.
var mtx *btcwire.MsgTx
var blksha *btcwire.ShaHash
tx, err := s.server.txMemPool.FetchTransaction(txSha)
if err != nil {
txList, err := s.server.db.FetchTxBySha(txSha)
if err != nil {
rpcsLog.Errorf("Error fetching tx: %v", err)
return nil, btcjson.ErrNoTxInfo
}
if len(txList) == 0 {
return nil, btcjson.ErrNoTxInfo
}
lastTx := len(txList) - 1
mtx = txList[lastTx].Tx
blksha = txList[lastTx].BlkSha
} else {
mtx = tx.MsgTx()
}
// When the verbose flag isn't set, simply return the network-serialized
// transaction as a hex-encoded string.
if c.Verbose == 0 {
mtxHex, err := messageToHex(mtx)
if err != nil {
return nil, err
}
return mtxHex, nil
}
var blk *btcutil.Block
var maxidx int64
if blksha != nil {
blk, err = s.server.db.FetchBlockBySha(blksha)
if err != nil {
rpcsLog.Errorf("Error fetching sha: %v", err)
return nil, btcjson.ErrBlockNotFound
}
_, maxidx, err = s.server.db.NewestSha()
if err != nil {
rpcsLog.Errorf("Cannot get newest sha: %v", err)
return nil, btcjson.ErrNoNewestBlockInfo
}
}
rawTxn, jsonErr := createTxRawResult(s.server.netParams, c.Txid, mtx,
blk, maxidx, blksha)
if err != nil {
rpcsLog.Errorf("Cannot create TxRawResult for txSha=%s: %v", txSha, err)
return nil, jsonErr
}
return *rawTxn, nil
}
// bigToLEUint256 returns the passed big integer as an unsigned 256-bit integer
// encoded as little-endian bytes. Numbers which are larger than the max
// unsigned 256-bit integer are truncated.
func bigToLEUint256(n *big.Int) [uint256Size]byte {
// Pad or truncate the big-endian big int to correct number of bytes.
nBytes := n.Bytes()
nlen := len(nBytes)
pad := 0
start := 0
if nlen <= uint256Size {
pad = uint256Size - nlen
} else {
start = nlen - uint256Size
}
var buf [uint256Size]byte
copy(buf[pad:], nBytes[start:])
// Reverse the bytes to little endian and return them.
for i := 0; i < uint256Size/2; i++ {
buf[i], buf[uint256Size-1-i] = buf[uint256Size-1-i], buf[i]
}
return buf
}
// reverseUint32Array treats the passed bytes as a series of uint32s and
// reverses the byte order of each uint32. The passed byte slice must be a
// multiple of 4 for a correct result. The passed bytes slice is modified.
func reverseUint32Array(b []byte) {
blen := len(b)
for i := 0; i < blen; i += 4 {
b[i], b[i+3] = b[i+3], b[i]
b[i+1], b[i+2] = b[i+2], b[i+1]
}
}
// handleGetWorkRequest is a helper for handleGetWork which deals with
// generating and returning work to the caller.
//
// This function MUST be called with the RPC workstate locked.
func handleGetWorkRequest(s *rpcServer) (interface{}, error) {
state := s.workState
// Generate a new block template when the current best block has
// changed or the transactions in the memory pool have been updated
// and it has been at least one minute since the last template was
// generated.
lastTxUpdate := s.server.txMemPool.LastUpdated()
latestHash, latestHeight := s.server.blockManager.chainState.Best()
msgBlock := state.msgBlock
if msgBlock == nil || state.prevHash == nil ||
!state.prevHash.IsEqual(latestHash) ||
(state.lastTxUpdate != lastTxUpdate &&
time.Now().After(state.lastGenerated.Add(time.Minute))) {
// Reset the extra nonce and clear all cached template
// variations if the best block changed.
if state.prevHash != nil && !state.prevHash.IsEqual(latestHash) {
state.extraNonce = 0
state.blockInfo = make(map[btcwire.ShaHash]*workStateBlockInfo)
}
// Reset the previous best hash the block template was generated
// against so any errors below cause the next invocation to try
// again.
state.prevHash = nil
// Choose a payment address at random.
rand.Seed(time.Now().UnixNano())
payToAddr := cfg.miningAddrs[rand.Intn(len(cfg.miningAddrs))]
template, err := NewBlockTemplate(s.server.txMemPool, payToAddr)
if err != nil {
errStr := fmt.Sprintf("Failed to create new block "+
"template: %v", err)
rpcsLog.Errorf(errStr)
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: errStr,
}
}
msgBlock = template.block
// Update work state to ensure another block template isn't
// generated until needed.
state.msgBlock = msgBlock
state.lastGenerated = time.Now()
state.lastTxUpdate = lastTxUpdate
state.prevHash = latestHash
rpcsLog.Debugf("Generated block template (timestamp %v, extra "+
"nonce %d, target %064x, merkle root %s, signature "+
"script %x)", msgBlock.Header.Timestamp,
state.extraNonce,
btcchain.CompactToBig(msgBlock.Header.Bits),
msgBlock.Header.MerkleRoot,
msgBlock.Transactions[0].TxIn[0].SignatureScript)
} else {
// At this point, there is a saved block template and a new
// request for work was made, but either the available
// transactions haven't change or it hasn't been long enough to
// trigger a new block template to be generated. So, update the
// existing block template and track the variations so each
// variation can be regenerated if a caller finds an answer and
// makes a submission against it.
// Update the time of the block template to the current time
// while accounting for the median time of the past several
// blocks per the chain consensus rules.
UpdateBlockTime(msgBlock, s.server.blockManager)
// Increment the extra nonce and update the block template
// with the new value by regenerating the coinbase script and
// setting the merkle root to the new value.
state.extraNonce++
err := UpdateExtraNonce(msgBlock, latestHeight+1, state.extraNonce)
if err != nil {
errStr := fmt.Sprintf("Failed to update extra nonce: "+
"%v", err)
rpcsLog.Warnf(errStr)
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: errStr,
}
}
rpcsLog.Debugf("Updated block template (timestamp %v, extra "+
"nonce %d, target %064x, merkle root %s, signature "+
"script %x)", msgBlock.Header.Timestamp,
state.extraNonce,
btcchain.CompactToBig(msgBlock.Header.Bits),
msgBlock.Header.MerkleRoot,
msgBlock.Transactions[0].TxIn[0].SignatureScript)
}
// In order to efficiently store the variations of block templates that
// have been provided to callers, save a pointer to the block as well as
// the modified signature script keyed by the merkle root. This
// information, along with the data that is included in a work
// submission, is used to rebuild the block before checking the
// submitted solution.
coinbaseTx := msgBlock.Transactions[0]
state.blockInfo[msgBlock.Header.MerkleRoot] = &workStateBlockInfo{
msgBlock: msgBlock,
signatureScript: coinbaseTx.TxIn[0].SignatureScript,
}
// Serialize the block header into a buffer large enough to hold the
// the block header and the internal sha256 padding that is added and
// retuned as part of the data below.
data := make([]byte, 0, getworkDataLen)
buf := bytes.NewBuffer(data)
err := msgBlock.Header.Serialize(buf)
if err != nil {
errStr := fmt.Sprintf("Failed to serialize data: %v", err)
rpcsLog.Warnf(errStr)
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: errStr,
}
}
// Calculate the midstate for the block header. The midstate here is
// the internal state of the sha256 algorithm for the first chunk of the
// block header (sha256 operates on 64-byte chunks) which is before the
// nonce. This allows sophisticated callers to avoid hashing the first
// chunk over and over while iterating the nonce range.
data = data[:buf.Len()]
midstate := fastsha256.MidState256(data)
// Expand the data slice to include the full data buffer and apply the
// internal sha256 padding which consists of a single 1 bit followed
// by enough zeros to pad the message out to 56 bytes followed by the
// length of the message in bits encoded as a big-endian uint64
// (8 bytes). Thus, the resulting length is a multiple of the sha256
// block size (64 bytes). This makes the data ready for sophisticated
// caller to make use of only the second chunk along with the midstate
// for the first chunk.
data = data[:getworkDataLen]
data[btcwire.MaxBlockHeaderPayload] = 0x80
binary.BigEndian.PutUint64(data[len(data)-8:],
btcwire.MaxBlockHeaderPayload*8)
// Create the hash1 field which is a zero hash along with the internal
// sha256 padding as described above. This field is really quite
// useless, but it is required for compatibility with the reference
// implementation.
var hash1 [hash1Len]byte
hash1[btcwire.HashSize] = 0x80
binary.BigEndian.PutUint64(hash1[len(hash1)-8:], btcwire.HashSize*8)
// The final result reverses the each of the fields to little endian.
// In particular, the data, hash1, and midstate fields are treated as
// arrays of uint32s (per the internal sha256 hashing state) which are
// in big endian, and thus each 4 bytes is byte swapped. The target is
// also in big endian, but it is treated as a uint256 and byte swapped
// to little endian accordingly.
//
// The fact the fields are reversed in this way is rather odd and likey
// an artifact of some legacy internal state in the reference
// implementation, but it is required for compatibility.
reverseUint32Array(data)
reverseUint32Array(hash1[:])
reverseUint32Array(midstate[:])
target := bigToLEUint256(btcchain.CompactToBig(msgBlock.Header.Bits))
reply := &btcjson.GetWorkResult{
Data: hex.EncodeToString(data),
Hash1: hex.EncodeToString(hash1[:]),
Midstate: hex.EncodeToString(midstate[:]),
Target: hex.EncodeToString(target[:]),
}
return reply, nil
}
// handleGetWorkSubmission is a helper for handleGetWork which deals with
// the calling submitting work to be verified and processed.
//
// This function MUST be called with the RPC workstate locked.
func handleGetWorkSubmission(s *rpcServer, hexData string) (interface{}, error) {
// Ensure the provided data is sane.
if len(hexData)%2 != 0 {
hexData = "0" + hexData
}
data, err := hex.DecodeString(hexData)
if err != nil {
return false, btcjson.Error{
Code: btcjson.ErrDecodeHexString.Code,
Message: fmt.Sprintf("argument must be "+
"hexadecimal string (not %q)", hexData),
}
}
if len(data) != getworkDataLen {
return false, btcjson.Error{
Code: btcjson.ErrInvalidParameter.Code,
Message: fmt.Sprintf("argument must be "+
"%d bytes (not %d)", getworkDataLen,
len(data)),
}
}
// Reverse the data as if it were an array of 32-bit unsigned integers.
// The fact the getwork request and submission data is reversed in this
// way is rather odd and likey an artifact of some legacy internal state
// in the reference implementation, but it is required for
// compatibility.
reverseUint32Array(data)
// Deserialize the block header from the data.
var submittedHeader btcwire.BlockHeader
bhBuf := bytes.NewReader(data[0:btcwire.MaxBlockHeaderPayload])
err = submittedHeader.Deserialize(bhBuf)
if err != nil {
return false, btcjson.Error{
Code: btcjson.ErrInvalidParameter.Code,
Message: fmt.Sprintf("argument does not "+
"contain a valid block header: %v", err),
}
}
// Look up the full block for the provided data based on the
// merkle root. Return false to indicate the solve failed if
// it's not available.
state := s.workState
blockInfo, ok := state.blockInfo[submittedHeader.MerkleRoot]
if !ok {
rpcsLog.Debugf("Block submitted via getwork has no matching "+
"template for merkle root %s",
submittedHeader.MerkleRoot)
return false, nil
}
// Reconstruct the block using the submitted header stored block info.
msgBlock := blockInfo.msgBlock
block := btcutil.NewBlock(msgBlock)
msgBlock.Header.Timestamp = submittedHeader.Timestamp
msgBlock.Header.Nonce = submittedHeader.Nonce
msgBlock.Transactions[0].TxIn[0].SignatureScript = blockInfo.signatureScript
merkles := btcchain.BuildMerkleTreeStore(block.Transactions())
msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1]
// Ensure the submitted block hash is less than the target difficulty.
err = btcchain.CheckProofOfWork(block, activeNetParams.PowLimit)
if err != nil {
// Anything other than a rule violation is an unexpected error,
// so return that error as an internal error.
if _, ok := err.(btcchain.RuleError); !ok {
return false, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: fmt.Sprintf("Unexpected error while "+
"checking proof of work: %v", err),
}
}
rpcsLog.Debugf("Block submitted via getwork does not meet "+
"the required proof of work: %v", err)
return false, nil
}
latestHash, _ := s.server.blockManager.chainState.Best()
if !msgBlock.Header.PrevBlock.IsEqual(latestHash) {
rpcsLog.Debugf("Block submitted via getwork with previous "+
"block %s is stale", msgBlock.Header.PrevBlock)
return false, nil
}
// Process this block using the same rules as blocks coming from other
// nodes. This will in turn relay it to the network like normal.
isOrphan, err := s.server.blockManager.ProcessBlock(block, btcchain.BFNone)
if err != nil || isOrphan {
// Anything other than a rule violation is an unexpected error,
// so return that error as an internal error.
if _, ok := err.(btcchain.RuleError); !ok {
return false, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: fmt.Sprintf("Unexpected error while "+
"processing block: %v", err),
}
}
rpcsLog.Infof("Block submitted via getwork rejected: %v", err)
return false, nil
}
// The block was accepted.
blockSha, _ := block.Sha()
rpcsLog.Infof("Block submitted via getwork accepted: %s", blockSha)
return true, nil
}
// handleGetWork implements the getwork command.
func handleGetWork(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.GetWorkCmd)
// Respond with an error if there are no addresses to pay the created
// blocks to.
if len(cfg.miningAddrs) == 0 {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: "No payment addresses specified via --miningaddr",
}
}
// Return an error if there are no peers connected since there is no
// way to relay a found block or receive transactions to work on.
// However, allow this state when running in the regression test or
// simulation test mode.
if !(cfg.RegressionTest || cfg.SimNet) && s.server.ConnectedCount() == 0 {
return nil, btcjson.ErrClientNotConnected
}
// No point in generating or accepting work before the chain is synced.
_, currentHeight := s.server.blockManager.chainState.Best()
if currentHeight != 0 && !s.server.blockManager.IsCurrent() {
return nil, btcjson.ErrClientInInitialDownload
}
// Protect concurrent access from multiple RPC invocations for work
// requests and submission.
s.workState.Lock()
defer s.workState.Unlock()
// When the caller provides data, it is a submission of a supposedly
// solved block that needs to be checked and submitted to the network
// if valid.
if c.Data != "" {
return handleGetWorkSubmission(s, c.Data)
}
// No data was provided, so the caller is requesting work.
return handleGetWorkRequest(s)
}
var helpAddenda = map[string]string{
"sendrawtransaction": `
NOTE: btcd does not currently support the "allowhighfees" parameter.`,
}
// getHelp text retreives help text from btcjson for the command in question.
// If there is any extra btcd specific information related to the given command
// then this is appended to the string.
func getHelpText(cmdName string) (string, error) {
help, err := btcjson.GetHelpString(cmdName)
if err != nil {
return "", err
}
if helpAddendum, ok := helpAddenda[cmdName]; ok {
help += helpAddendum
}
return help, nil
}
// handleHelp implements the help command.
func handleHelp(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
help := cmd.(*btcjson.HelpCmd)
// if no args we give a list of all known commands
if help.Command == "" {
commands := ""
first := true
// TODO(oga) this should have one liner usage for each command
// really, but for now just a list of commands is sufficient.
for k := range rpcHandlers {
if !first {
commands += "\n"
}
commands += k
first = false
}
return commands, nil
}
// Check that we actually support the command asked for. We only
// search the main list of hanlders since we do not wish to provide help
// for commands that are unimplemented or relate to wallet
// functionality.
if _, ok := rpcHandlers[help.Command]; !ok {
return "", fmt.Errorf("help: unknown command: %s", help.Command)
}
return getHelpText(help.Command)
}
// handlePing implements the ping command.
func handlePing(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
// Ask server to ping \o_
nonce, err := btcwire.RandomUint64()
if err != nil {
return nil, fmt.Errorf("Not sending ping - can not generate "+
"nonce: %v", err)
}
s.server.BroadcastMessage(btcwire.NewMsgPing(nonce))
return nil, nil
}
// handleSendRawTransaction implements the sendrawtransaction command.
func handleSendRawTransaction(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.SendRawTransactionCmd)
// Deserialize and send off to tx relay
hexStr := c.HexTx
if len(hexStr)%2 != 0 {
hexStr = "0" + hexStr
}
serializedTx, err := hex.DecodeString(hexStr)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDecodeHexString.Code,
Message: fmt.Sprintf("argument must be hexadecimal "+
"string (not %q)", hexStr),
}
}
msgtx := btcwire.NewMsgTx()
err = msgtx.Deserialize(bytes.NewReader(serializedTx))
if err != nil {
err := btcjson.Error{
Code: btcjson.ErrDeserialization.Code,
Message: "TX decode failed",
}
return nil, err
}
tx := btcutil.NewTx(msgtx)
err = s.server.txMemPool.ProcessTransaction(tx, false, false)
if err != nil {
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error. In both cases, a JSON-RPC
// error is returned to the client with the deserialization
// error code (to match bitcoind behavior).
if _, ok := err.(TxRuleError); ok {
rpcsLog.Debugf("Rejected transaction %v: %v", tx.Sha(),
err)
} else {
rpcsLog.Errorf("Failed to process transaction %v: %v",
tx.Sha(), err)
}
err = btcjson.Error{
Code: btcjson.ErrDeserialization.Code,
Message: fmt.Sprintf("TX rejected: %v", err),
}
return nil, err
}
// We keep track of all the sendrawtransaction request txs so that we
// can rebroadcast them if they don't make their way into a block.
iv := btcwire.NewInvVect(btcwire.InvTypeTx, tx.Sha())
s.server.AddRebroadcastInventory(iv)
return tx.Sha().String(), nil
}
// handleSetGenerate implements the setgenerate command.
func handleSetGenerate(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.SetGenerateCmd)
// Disable generation regardless of the provided generate flag if the
// maximum number of threads (goroutines for our purposes) is 0.
// Otherwise enable or disable it depending on the provided flag.
generate := c.Generate
if c.GenProcLimit == 0 {
generate = false
}
if !generate {
s.server.cpuMiner.Stop()
} else {
// Respond with an error if there are no addresses to pay the
// created blocks to.
if len(cfg.miningAddrs) == 0 {
return nil, btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: "No payment addresses specified " +
"via --miningaddr",
}
}
// It's safe to call start even if it's already started.
s.server.cpuMiner.SetNumWorkers(int32(c.GenProcLimit))
s.server.cpuMiner.Start()
}
return nil, nil
}
// handleStop implements the stop command.
func handleStop(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
s.server.Stop()
return "btcd stopping.", nil
}
// handleSubmitBlock implements the submitblock command.
func handleSubmitBlock(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.SubmitBlockCmd)
// Deserialize the submitted block.
hexStr := c.HexBlock
if len(hexStr)%2 != 0 {
hexStr = "0" + c.HexBlock
}
serializedBlock, err := hex.DecodeString(hexStr)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDecodeHexString.Code,
Message: fmt.Sprintf("argument must be hexadecimal "+
"string (not %q)", hexStr),
}
}
block, err := btcutil.NewBlockFromBytes(serializedBlock)
if err != nil {
return nil, btcjson.Error{
Code: btcjson.ErrDeserialization.Code,
Message: "Block decode failed",
}
}
_, err = s.server.blockManager.ProcessBlock(block, btcchain.BFNone)
if err != nil {
return fmt.Sprintf("rejected: %s", err.Error()), nil
}
return nil, nil
}
func verifyChain(db btcdb.Db, level, depth int32) error {
_, curHeight64, err := db.NewestSha()
if err != nil {
rpcsLog.Errorf("Verify is unable to fetch current block "+
"height: %v", err)
}
curHeight := int32(curHeight64)
finishHeight := curHeight - depth
if finishHeight < 0 {
finishHeight = 0
}
rpcsLog.Infof("Verifying chain for %d blocks at level %d",
curHeight-finishHeight, level)
for height := curHeight; height > finishHeight; height-- {
// Level 0 just looks up the block.
sha, err := db.FetchBlockShaByHeight(int64(height))
if err != nil {
rpcsLog.Errorf("Verify is unable to fetch block at "+
"height %d: %v", height, err)
return err
}
block, err := db.FetchBlockBySha(sha)
if err != nil {
rpcsLog.Errorf("Verify is unable to fetch block at "+
"sha %v height %d: %v", sha, height, err)
return err
}
// Level 1 does basic chain sanity checks.
if level > 0 {
err := btcchain.CheckBlockSanity(block,
activeNetParams.PowLimit)
if err != nil {
rpcsLog.Errorf("Verify is unable to "+
"validate block at sha %v height "+
"%d: %v", sha, height, err)
return err
}
}
}
rpcsLog.Infof("Chain verify completed successfully")
return nil
}
// handleValidateAddress implements the validateaddress command.
func handleValidateAddress(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.ValidateAddressCmd)
result := btcjson.ValidateAddressResult{}
addr, err := btcutil.DecodeAddress(c.Address, activeNetParams.Params)
if err != nil {
// Return the default value (false) for IsValid.
return result, nil
}
result.Address = addr.EncodeAddress()
result.IsValid = true
return result, nil
}
// handleVerifyChain implements the verifychain command.
func handleVerifyChain(s *rpcServer, cmd btcjson.Cmd, closeChan <-chan struct{}) (interface{}, error) {
c := cmd.(*btcjson.VerifyChainCmd)
err := verifyChain(s.server.db, c.CheckLevel, c.CheckDepth)
return err == nil, nil
}
// parseCmd parses a marshaled known command, returning any errors as a
// btcjson.Error that can be used in replies. The returned cmd may still
// be non-nil if b is at least a valid marshaled JSON-RPC message.
func parseCmd(b []byte) (btcjson.Cmd, *btcjson.Error) {
cmd, err := btcjson.ParseMarshaledCmd(b)
if err != nil {
jsonErr, ok := err.(btcjson.Error)
if !ok {
jsonErr = btcjson.Error{
Code: btcjson.ErrParse.Code,
Message: err.Error(),
}
}
return cmd, &jsonErr
}
return cmd, nil
}
// standardCmdReply checks that a parsed command is a standard
// Bitcoin JSON-RPC command and runs the proper handler to reply to the
// command.
func standardCmdReply(cmd btcjson.Cmd, s *rpcServer, closeChan <-chan struct{}) (reply btcjson.Reply) {
id := cmd.Id()
reply.Id = &id
handler, ok := rpcHandlers[cmd.Method()]
if ok {
goto handled
}
_, ok = rpcAskWallet[cmd.Method()]
if ok {
handler = handleAskWallet
goto handled
}
_, ok = rpcUnimplemented[cmd.Method()]
if ok {
handler = handleUnimplemented
goto handled
}
reply.Error = &btcjson.ErrMethodNotFound
return reply
handled:
result, err := handler(s, cmd, closeChan)
if err != nil {
jsonErr, ok := err.(btcjson.Error)
if !ok {
// In the case where we did not have a btcjson
// error to begin with, make a new one to send,
// but this really should not happen.
jsonErr = btcjson.Error{
Code: btcjson.ErrInternal.Code,
Message: err.Error(),
}
}
reply.Error = &jsonErr
} else {
reply.Result = result
}
return reply
}
// getDifficultyRatio returns the proof-of-work difficulty as a multiple of the
// minimum difficulty using the passed bits field from the header of a block.
func getDifficultyRatio(bits uint32) float64 {
// The minimum difficulty is the max possible proof-of-work limit bits
// converted back to a number. Note this is not the same as the the
// proof of work limit directly because the block difficulty is encoded
// in a block with the compact form which loses precision.
max := btcchain.CompactToBig(activeNetParams.PowLimitBits)
target := btcchain.CompactToBig(bits)
difficulty := new(big.Rat).SetFrac(max, target)
outString := difficulty.FloatString(2)
diff, err := strconv.ParseFloat(outString, 64)
if err != nil {
rpcsLog.Errorf("Cannot get difficulty: %v", err)
return 0
}
return diff
}